Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The legendrian operator is given as \\(\\Lambda^{2} = \\frac{1}{sin\\theta}\\fra

ID: 822152 • Letter: T

Question

The legendrian operator is given as

   (Lambda^{2} = rac{1}{sin heta} rac{partial}{partial heta}(sin heta rac{partial}{partial heta}) + rac{1}{sin^{2} heta} rac{partial^{2}}{partial phi^{2}})   

One eigenfunction of the legendrian operator is given as    (Y_{2,+2}( heta,phi) = sqrt{ rac{15}{32pi}}*sin^{2} heta*e^{+2iphi})   

Write the eigenvalue eqation (which should just be the Schrodinger Equation without the h bar squared term) and calculate the corresponding eigenvalue. You will need to use differentiation.

Explanation / Answer

Eigenvalue Equation:

lambda^2 (Y 2,+2) = E * (Y 2,+2)

Here, lambda ^2 = legendrian operator, E = eigenvalue


Now, lambda ^ 2 (Y 2,+2) =

lambda^2 ( sqrt(15/32pi) * sin^2(theta) * exp(2i*phi))

= 1/sin(theta) * del/del(theta) ( sqrt(15/32pi) *exp(2i*phi) * 2 (sin(theta))^2*cos(theta)) + sqrt(15/32pi) * (-4)exp(2i*phi)

= sqrt(15/32pi) * exp(2i*phi) * [ 4(cos(theta))^2 - 2(sin(theta))^2 -4]

= sqrt(15/32pi) * exp(2i*phi) * [ -6 (sin(theta))^2]

= -6 * (Y 2,+2)


So Eigenvalue E = -6


Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote