Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Seasonal affective disorder (SAD) is a type of depression during seasons with le

ID: 3055455 • Letter: S

Question

Seasonal affective disorder (SAD) is a type of depression during seasons with less daylight (e.g., winter months). One therapy for SAD is phototherapy, which is increased exposure to light used to improve mood. A researcher tests this therapy by exposing a sample of SAD patients to different intensities of light (low, medium, high) in a light box, either in the morning or at night (these are the times thought to be most effective for light therapy). All participants rated their mood following this therapy on a scale from 1 (poor mood) to 9 (improved mood). The hypothetical results are given in the following table.

(a) Complete the F-table and make a decision to retain or reject the null hypothesis for each hypothesis test. (Round your answers to two decimal places. Assume experimentwise alpha equal to 0.05.)

(b) Compute Tukey's HSD to analyze the significant main effect.

What is the critical value for each pairwise comparison?

(c) Summarize the results for this test using APA format.

Light Intensity Low Medium High Time of
Day Morning 5 5 7 6 6 8 4 4 6 7 7 9 5 9 5 6 8 8 Night 5 6 9 8 8 7 6 7 6 7 5 8 4 9 7 3 8 6

Explanation / Answer

There are two independent variables light intensity and time of day and dependent variable is participants rated their mood.

This is the problem of two way anova with interaction.

We can do two way anova in XLSTAT.

Steps :

ENTER data into XLSTAT sheet --> XLSTAT --> Modeling data --> ANOVA --> Y/Dependent variable --> Quantitative : select participants rated their mood variable --> X/Explanatory variable --> Qualitative --> select intensity and time of day together --> variable labels --> Options --> Interaction/ level : 2 --> Confidence level : 95 --> Outputs --> Click all the apply --> ok --> Factors and interaction --> Select all -->ok

Summary statistics (Quantitative data):

Variable Observations Obs. with missing data Obs. without missing data Minimum Maximum Mean Std. deviation

obs 36 0 36 3.000 9.000 6.500 1.595

Summary statistics (Qualitative data):

Variable Categories Counts Frequencies %

intensity 1 12 12 33.333

2 12 12 33.333

3 12 12 33.333

time of day 1 18 18 50.000

2 18 18 50.000

Correlation matrix:

intensity-1 intensity-2 intensity-3 time of day-1 time of day-2 intensity-1*time of day-1 intensity-1*time of day-2 intensity-2*time of day-1 intensity-2*time of day-2 intensity-3*time of day-1 intensity-3*time of day-2 obs

intensity-1 1 -0.500 -0.500 0.000 0.000 0.632 0.632 -0.316 -0.316 -0.316 -0.316 -0.450

intensity-2 -0.500 1 -0.500 0.000 0.000 -0.316 -0.316 0.632 0.632 -0.316 -0.316 0.150

intensity-3 -0.500 -0.500 1 0.000 0.000 -0.316 -0.316 -0.316 -0.316 0.632 0.632 0.300

time of day-1 0.000 0.000 0.000 1 -1.000 0.447 -0.447 0.447 -0.447 0.447 -0.447 -0.071

time of day-2 0.000 0.000 0.000 -1.000 1 -0.447 0.447 -0.447 0.447 -0.447 0.447 0.071

intensity-1*time of day-1 0.632 -0.316 -0.316 0.447 -0.447 1 -0.200 -0.200 -0.200 -0.200 -0.200 -0.284

intensity-1*time of day-2 0.632 -0.316 -0.316 -0.447 0.447 -0.200 1 -0.200 -0.200 -0.200 -0.200 -0.284

intensity-2*time of day-1 -0.316 0.632 -0.316 0.447 -0.447 -0.200 -0.200 1 -0.200 -0.200 -0.200 0.000

intensity-2*time of day-2 -0.316 0.632 -0.316 -0.447 0.447 -0.200 -0.200 -0.200 1 -0.200 -0.200 0.190

intensity-3*time of day-1 -0.316 -0.316 0.632 0.447 -0.447 -0.200 -0.200 -0.200 -0.200 1 -0.200 0.190

intensity-3*time of day-2 -0.316 -0.316 0.632 -0.447 0.447 -0.200 -0.200 -0.200 -0.200 -0.200 1 0.190

obs -0.450 0.150 0.300 -0.071 0.071 -0.284 -0.284 0.000 0.190 0.190 0.190 1

Regression of variable obs:

Goodness of fit statistics (obs):

Observations 36.000

Sum of weights 36.000

DF 30.000

R² 0.225

Adjusted R² 0.096

MSE 2.300

RMSE 1.517

MAPE 20.253

DW 2.161

Cp 6.000

AIC 35.421

SBC 44.922

PC 1.085

Analysis of variance (obs):

Source DF Sum of squares Mean squares F Pr > F

Model 5 20.000 4.000 1.739 0.156

Error 30 69.000 2.300

Corrected Total 35 89.000

Computed against model Y=Mean(Y)

Type I Sum of Squares analysis (obs):

Source DF Sum of squares Mean squares F Pr > F

intensity 2 18.667 9.333 4.058 0.028

time of day 1 0.444 0.444 0.193 0.663

intensity*time of day 2 0.889 0.444 0.193 0.825

Type II Sum of Squares analysis (obs):

Source DF Sum of squares Mean squares F Pr > F

intensity 2 18.667 9.333 4.058 0.028

time of day 1 0.444 0.444 0.193 0.663

intensity*time of day 2 0.889 0.444 0.193 0.825

Type III Sum of Squares analysis (obs):

Source DF Sum of squares Mean squares F Pr > F

intensity 2 18.667 9.333 4.058 0.028

time of day 1 0.444 0.444 0.193 0.663

intensity*time of day 2 0.889 0.444 0.193 0.825

Model parameters (obs):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

Intercept 7.167 0.619 11.575 < 0.0001 5.902 8.431

intensity-1 -1.667 0.876 -1.903 0.067 -3.455 0.122

intensity-2 0.000 0.876 0.000 1.000 -1.788 1.788

intensity-3 0.000 0.000

time of day-1 0.000 0.876 0.000 1.000 -1.788 1.788

time of day-2 0.000 0.000

intensity-1*time of day-1 0.000 1.238 0.000 1.000 -2.529 2.529

intensity-1*time of day-2 0.000 0.000

intensity-2*time of day-1 -0.667 1.238 -0.538 0.594 -3.196 1.862

intensity-2*time of day-2 0.000 0.000

intensity-3*time of day-1 0.000 0.000

intensity-3*time of day-2 0.000 0.000

Equation of the model (obs):

obs = 7.16666666666667-1.66666666666666*intensity-1-0.666666666666667*intensity-2*time of day-1

Standardized coefficients (obs):

Source Value Standard error t Pr > |t| Lower bound (95%) Upper bound (95%)

intensity-1 -0.500 0.263 -1.903 0.067 -1.036 0.036

intensity-2 0.000 0.263 0.000 1.000 -0.536 0.536

intensity-3 0.000 0.000

time of day-1 0.000 0.278 0.000 1.000 -0.569 0.569

time of day-2 0.000 0.000

intensity-1*time of day-1 0.000 0.294 0.000 1.000 -0.599 0.599

intensity-1*time of day-2 0.000 0.000

intensity-2*time of day-1 -0.158 0.294 -0.538 0.594 -0.757 0.441

intensity-2*time of day-2 0.000 0.000

intensity-3*time of day-1 0.000 0.000

intensity-3*time of day-2 0.000 0.000

Predictions and residuals (obs):

Observation Weight obs Pred(obs) Residual Std. residual Std. dev. on pred. (Mean) Lower bound 95% (Mean) Upper bound 95% (Mean) Std. dev. on pred. (Observation) Lower bound 95% (Observation) Upper bound 95% (Observation)

Obs1 1 5.000 5.500 -0.500 -0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs2 1 6.000 5.500 0.500 0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs3 1 4.000 5.500 -1.500 -0.989 0.619 4.236 6.764 1.638 2.155 8.845

Obs4 1 7.000 5.500 1.500 0.989 0.619 4.236 6.764 1.638 2.155 8.845

Obs5 1 5.000 5.500 -0.500 -0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs6 1 6.000 5.500 0.500 0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs7 1 5.000 5.500 -0.500 -0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs8 1 8.000 5.500 2.500 1.648 0.619 4.236 6.764 1.638 2.155 8.845

Obs9 1 6.000 5.500 0.500 0.330 0.619 4.236 6.764 1.638 2.155 8.845

Obs10 1 7.000 5.500 1.500 0.989 0.619 4.236 6.764 1.638 2.155 8.845

Obs11 1 4.000 5.500 -1.500 -0.989 0.619 4.236 6.764 1.638 2.155 8.845

Obs12 1 3.000 5.500 -2.500 -1.648 0.619 4.236 6.764 1.638 2.155 8.845

Obs13 1 5.000 6.500 -1.500 -0.989 0.619 5.236 7.764 1.638 3.155 9.845

Obs14 1 6.000 6.500 -0.500 -0.330 0.619 5.236 7.764 1.638 3.155 9.845

Obs15 1 4.000 6.500 -2.500 -1.648 0.619 5.236 7.764 1.638 3.155 9.845

Obs16 1 7.000 6.500 0.500 0.330 0.619 5.236 7.764 1.638 3.155 9.845

Obs17 1 9.000 6.500 2.500 1.648 0.619 5.236 7.764 1.638 3.155 9.845

Obs18 1 8.000 6.500 1.500 0.989 0.619 5.236 7.764 1.638 3.155 9.845

Obs19 1 6.000 7.167 -1.167 -0.769 0.619 5.902 8.431 1.638 3.821 10.512

Obs20 1 8.000 7.167 0.833 0.549 0.619 5.902 8.431 1.638 3.821 10.512

Obs21 1 7.000 7.167 -0.167 -0.110 0.619 5.902 8.431 1.638 3.821 10.512

Obs22 1 5.000 7.167 -2.167 -1.429 0.619 5.902 8.431 1.638 3.821 10.512

Obs23 1 9.000 7.167 1.833 1.209 0.619 5.902 8.431 1.638 3.821 10.512

Obs24 1 8.000 7.167 0.833 0.549 0.619 5.902 8.431 1.638 3.821 10.512

Obs25 1 7.000 7.167 -0.167 -0.110 0.619 5.902 8.431 1.638 3.821 10.512

Obs26 1 8.000 7.167 0.833 0.549 0.619 5.902 8.431 1.638 3.821 10.512

Obs27 1 6.000 7.167 -1.167 -0.769 0.619 5.902 8.431 1.638 3.821 10.512

Obs28 1 9.000 7.167 1.833 1.209 0.619 5.902 8.431 1.638 3.821 10.512

Obs29 1 5.000 7.167 -2.167 -1.429 0.619 5.902 8.431 1.638 3.821 10.512

Obs30 1 8.000 7.167 0.833 0.549 0.619 5.902 8.431 1.638 3.821 10.512

Obs31 1 9.000 7.167 1.833 1.209 0.619 5.902 8.431 1.638 3.821 10.512

Obs32 1 7.000 7.167 -0.167 -0.110 0.619 5.902 8.431 1.638 3.821 10.512

Obs33 1 6.000 7.167 -1.167 -0.769 0.619 5.902 8.431 1.638 3.821 10.512

Obs34 1 8.000 7.167 0.833 0.549 0.619 5.902 8.431 1.638 3.821 10.512

Obs35 1 7.000 7.167 -0.167 -0.110 0.619 5.902 8.431 1.638 3.821 10.512

Obs36 1 6.000 7.167 -1.167 -0.769 0.619 5.902 8.431 1.638 3.821 10.512

Interpretation (obs):

Given the R2, 22% of the variability of the dependent variable obs is explained by the 3 explanatory variables.

Given the p-value of the F statistic computed in the ANOVA table, and given the significance level of 5%, the information brought by the explanatory variables is not significantly better than what a basic mean would bring. The fact that variables do not bring significant information to the model may be interpreted in different ways: Either the variables do not contribute to the model, or some covariates that would help explaining the variability are missing, or the model is wrong, or the data contain errors.

Based on the Type III sum of squares, the following variables bring significant information to explain the variability of the dependent variable obs: intensity.

Based on the Type III sum of squares, the following variables do not bring significant information to explain the variability the dependent variable obs: time of day,intensity*time of day. You might want to remove them from the model.

Among the explanatory variables, based on the Type III sum of squares, variable intensity is the most influential.

LS Means for factor intensity:

Category LS mean Standard error Lower bound (95%) Upper bound (95%)

1 5.500 0.438 4.606 6.394

2 6.833 0.438 5.939 7.727

3 7.167 0.438 6.273 8.061

intensity*time of day:

Category LS mean Standard error Lower bound (95%) Upper bound (95%)

intensity-1*time of day-1 5.500 0.619 4.236 6.764

intensity-1*time of day-2 5.500 0.619 4.236 6.764

intensity-2*time of day-1 6.500 0.619 5.236 7.764

intensity-2*time of day-2 7.167 0.619 5.902 8.431

intensity-3*time of day-1 7.167 0.619 5.902 8.431

intensity-3*time of day-2 7.167 0.619 5.902 8.431

intensity ime of day 1 2

1 5.500 5.500

2 6.500 7.167

3 7.167 7.167

LS Means for factor time of day:

Category LS mean Standard error Lower bound (95%) Upper bound (95%)

1 6.389 0.357 5.659 7.119

2 6.611 0.357 5.881 7.341

time of day*intensity:

Category LS mean Standard error Lower bound (95%) Upper bound (95%)

intensity-1*time of day-1 5.500 0.619 4.236 6.764

intensity-1*time of day-2 5.500 0.619 4.236 6.764

intensity-2*time of day-1 6.500 0.619 5.236 7.764

intensity-2*time of day-2 7.167 0.619 5.902 8.431

intensity-3*time of day-1 7.167 0.619 5.902 8.431

intensity-3*time of day-2 7.167 0.619 5.902 8.431

time of dayintensity 1 2 3

1 5.500 6.500 7.167

2 5.500 7.167 7.167

obs intensity time of day 5 1 1 6 1 1 4 1 1 7 1 1 5 1 1 6 1 1 5 1 2 8 1 2 6 1 2 7 1 2 4 1 2 3 1 2 5 2 1 6 2 1 4 2 1 7 2 1 9 2 1 8 2 1 6 2 2 8 2 2 7 2 2 5 2 2 9 2 2 8 2 2 7 3 1 8 3 1 6 3 1 9 3 1 5 3 1 8 3 1 9 3 2 7 3 2 6 3 2 8 3 2 7 3 2 6 3 2
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote