The elongation delta of a solid circular rod under tensile loading is given by d
ID: 2996922 • Letter: T
Question
The elongation delta of a solid circular rod under tensile loading is given by delta = PL/EA where P is the applied force. L is the length of the bar. E is Young's modulus, and A is the cross-sectional area of the bar. Suppose that we want to determine Young's modulus from the results of a tensile test. The following values have been either calculated or estimated: P = 5000 Plusminus 50 N delta = 0.05 plusminus 0.001 mm L = 50 plusminus 0.1 mm d = 7 plusminus 0.05 mm where d is the bar diameter. Determine E plusminus delta E. The cantilever beam shown at right is fabricated from a thin-walled circular tube of radius r and wall thickness t. The beam is subjected to a point load P at its end. resulting in a F deflection delta at this point. delta = PL3/3 pi Er3t Given that P = 100 plusminus 5 N. r= 10 plusminus 0.05 mm t = 0.2 plusminus 0.01 mm L = 100 plusminus 0.5 mm and E = 200 plusminus 10 GPa. determine the uncertainty in delta.Explanation / Answer
1.) E = PL/(delta*A) = 5000*50*10^-3/(0.05*10^-3*pi*(3.5x10^-3)^2) = 1.3 x 10^11 N/m^2
E = 4*P*L/(delta*pi*d^2)
So dE/E = (dP/P) + (dL/L) + (d(delta)/delta) + 2*(d(d)/d)
dE/E = (50/5000) + (0.1/50) + (0.001/0.05) + 2*(0.05/7)
dE/E = 0.046286
So dE = (1.3x 10^11)(0.046286) = 0.0602 x 10^11 N/m^2
So E +/- dE = (1.3 +/- 0.0602) x 10^11 N/m^2
2.) delta = P*L^3/(3pi*E*r^3*t) = 100*(10^-1)^3/(3pi*2*10^11*(10^-2)^3*0.2*10^-3) = 2.6526 x 10^-4 m = 0.2653 mm
delta = P*L^3/(3pi*E*r^3*t)
So d(delta)/delta = (dP/P) + 3*(dL/L) + (dE/E) + 3*(dr/r) + (dt/t)
d(delta)/delta = (5/100) + 3*(0.5/100) + (10/200) + 3*(0.05/10) + (0.01/0.2)
d(delta)/delta = 0.18
So d(delta) = (0.26526)(0.18) = 0.04775 mm
So the uncertainity in delta = 0.04775 mm
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.