Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The following code defines a multimap associative container and inserts some ini

ID: 3695784 • Letter: T

Question

The following code defines a multimap associative container and inserts some initial values. Add code for a second multimap associative container and algorithm statements that search for duplicates in the original container and move those duplicate keys and values to the new container (deleting the entries from the original container). See Fig. 15.17 on p. 670.

#include <map>

using namespace std;

int main()

{

   multimap< int, int, less< int > > container8;

   container8.insert( make_pair ( 7, 24 ) );

   container8.insert( make_pair ( 7, 16 ) );

   container8.insert( make_pair ( 4, 56 ) );

   container8.insert( make_pair ( 4, 72 ) );

   container8.insert( make_pair ( 3, 17 ) );

   container8.insert( make_pair ( 7, 41 ) );

   container8.insert( make_pair ( 2, 12 ) );

   container8.insert( make_pair ( 5, 67 ) );

}

Explanation / Answer

#include <iostream>

#include <float.h>

#include <stdlib.h>

#include <math.h>

using namespace std;

// A structure to represent a Point in 2D plane

struct Point

{

    int x, y;

};

/* Following two functions are needed for library function qsort().

   Refer: http://www.cplusplus.com/reference/clibrary/cstdlib/qsort/ */

// Needed to sort array of points according to X coordinate

int compareX(const void* a, const void* b)

{

    Point *p1 = (Point *)a, *p2 = (Point *)b;

    return (p1->x - p2->x);

}

// Needed to sort array of points according to Y coordinate

int compareY(const void* a, const void* b)

{

    Point *p1 = (Point *)a,   *p2 = (Point *)b;

    return (p1->y - p2->y);

}

// A utility function to find the distance between two points

float dist(Point p1, Point p2)

{

    return sqrt( (p1.x - p2.x)*(p1.x - p2.x) +

                 (p1.y - p2.y)*(p1.y - p2.y)

               );

}

// A Brute Force method to return the smallest distance between two points

// in P[] of size n

float bruteForce(Point P[], int n)

{

    float min = FLT_MAX;

    for (int i = 0; i < n; ++i)

        for (int j = i+1; j < n; ++j)

            if (dist(P[i], P[j]) < min)

                min = dist(P[i], P[j]);

    return min;

}

// A utility function to find minimum of two float values

float min(float x, float y)

{

    return (x < y)? x : y;

}

// A utility function to find the distance beween the closest points of

// strip of given size. All points in strip[] are sorted accordint to

// y coordinate. They all have an upper bound on minimum distance as d.

// Note that this method seems to be a O(n^2) method, but it's a O(n)

// method as the inner loop runs at most 6 times

float stripClosest(Point strip[], int size, float d)

{

    float min = d; // Initialize the minimum distance as d

    // Pick all points one by one and try the next points till the difference

    // between y coordinates is smaller than d.

    // This is a proven fact that this loop runs at most 6 times

    for (int i = 0; i < size; ++i)

        for (int j = i+1; j < size && (strip[j].y - strip[i].y) < min; ++j)

            if (dist(strip[i],strip[j]) < min)

                min = dist(strip[i], strip[j]);

    return min;

}

// A recursive function to find the smallest distance. The array Px contains

// all points sorted according to x coordinates and Py contains all points

// sorted according to y coordinates

float closestUtil(Point Px[], Point Py[], int n)

{

    // If there are 2 or 3 points, then use brute force

    if (n <= 3)

        return bruteForce(Px, n);

    // Find the middle point

    int mid = n/2;

    Point midPoint = Px[mid];

    // Divide points in y sorted array around the vertical line.

    // Assumption: All x coordinates are distinct.

    Point Pyl[mid+1];   // y sorted points on left of vertical line

    Point Pyr[n-mid-1]; // y sorted points on right of vertical line

    int li = 0, ri = 0; // indexes of left and right subarrays

    for (int i = 0; i < n; i++)

    {

      if (Py[i].x <= midPoint.x)

         Pyl[li++] = Py[i];

      else

         Pyr[ri++] = Py[i];

    }

    // Consider the vertical line passing through the middle point

    // calculate the smallest distance dl on left of middle point and

    // dr on right side

    float dl = closestUtil(Px, Pyl, mid);

    float dr = closestUtil(Px + mid, Pyr, n-mid);

    // Find the smaller of two distances

    float d = min(dl, dr);

    // Build an array strip[] that contains points close (closer than d)

    // to the line passing through the middle point

    Point strip[n];

    int j = 0;

    for (int i = 0; i < n; i++)

        if (abs(Py[i].x - midPoint.x) < d)

            strip[j] = Py[i], j++;

    // Find the closest points in strip. Return the minimum of d and closest

    // distance is strip[]

    return min(d, stripClosest(strip, j, d) );

}

// The main functin that finds the smallest distance

// This method mainly uses closestUtil()

float closest(Point P[], int n)

{

    Point Px[n];

    Point Py[n];

    for (int i = 0; i < n; i++)

    {

        Px[i] = P[i];

        Py[i] = P[i];

    }

    qsort(Px, n, sizeof(Point), compareX);

    qsort(Py, n, sizeof(Point), compareY);

    // Use recursive function closestUtil() to find the smallest distance

    return closestUtil(Px, Py, n);

}

// Driver program to test above functions

int main()

{

    Point P[] = {{2, 3}, {12, 30}, {40, 50}, {5, 1}, {12, 10}, {3, 4}};

    int n = sizeof(P) / sizeof(P[0]);

    cout << "The smallest distance is " << closest(P, n);

    return 0;

}

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote