PLEASE SHOW EACH AND EVERY STEP. THAK YOU!!! 971.9 770.6 950.4 970.3 669.8 788.6
ID: 3180432 • Letter: P
Question
PLEASE SHOW EACH AND EVERY STEP. THAK YOU!!!
971.9 770.6 950.4 970.3 669.8 788.6 962.2 914.7 896 627.4 871.9 729.4 885.4 1019 1134.3 523.6 791.9 981.4 701 568 649.8 980.7 1064 703 972.7 623.2 430.7 608.3 A grinding machine at Kruger Industrial Smoothing has been in service for a number of years, and the primary operator of the machine says that the machine has been pretty reliable. You collect a sample oftime between failure observations for the machine. One measure of reliability could be mean time between failures. Another could be the variability of time between failures. For the time between failure data (in operating hours) in homework 6.xlsx, find a 90% confidence interval for the standard deviation of time between failures. Interpret.Explanation / Answer
The formula for confidence interval for standard deviation is as below:
Ö [ (n-1)*s^2 / X(R)^2] and Ö[ (n-1)*s^2 / X(L)^2]
n = 28
s = sample standard deviation
a = 1 – 0.90 = 0.10
a/2 = 0.10 / 2 = 0.05
(1-a/2) = 1 – 0.05 = 0.95
Degrees of freedom = n – 1 = 27 – 1 = 26
We use Chi-square table to find the critical chi-square value.
X(R)^2 = Critical chi-square value for 27 degrees of freedom at 5% level of significance = 40.113
X(L)^2 = Critical chi-square value for 27 degrees of freedom at 95% level of significance = 16.151
Now find the sample standard deviation:
s = Ö [ sum of ( x – x bar )^2 / (n-1)]
x bar = Sx / n
x bar = sample mean
n = sample size
x bar = Sx / n = 22760.2 / 28 = 812.8643
x
( x - x bar )
( x - x bar )^2
971.9
159.035714
25292.35833
770.6
-42.264286
1786.269871
950.4
137.535714
18916.07263
970.3
157.435714
24786.00404
669.8
-143.064286
20467.38993
788.6
-24.264286
588.7555751
962.2
149.335714
22301.15548
914.7
101.835714
10370.51265
896
83.135714
6911.546942
627.4
-185.464286
34397.00138
871.9
59.035714
3485.215527
729.4
-83.464286
6966.287037
885.4
72.535714
5261.429805
1019
206.135714
42491.93259
1134.3
321.435714
103320.9182
523.6
-289.264286
83673.82716
791.9
-20.964286
439.5012875
981.4
168.535714
28404.28689
701
-111.864286
12513.61848
568
-244.864286
59958.51856
649.8
-163.064286
26589.96137
980.7
167.835714
28168.82689
1064
251.135714
63069.14685
703
-109.864286
12070.16134
972.7
159.835714
25547.45547
623.2
-189.664286
35972.54138
430.7
-382.164286
146049.5415
608.3
-204.564286
41846.54711
Total =
891646.7843
s = Ö (891646.7843/(28-1)) = Ö33023.9549 = 181.7249
The value of sample standard deviation is 181.7249
Ö [ (n-1)*s^2 / X(R)^2] and Ö [ (n-1)*s^2 / X(L)^2]
Ö [ ((28-1)*181.7249^2)/ 40.113] and Ö[ ((28-1)*181.7249^2)/ 16.151]
149.09 and 234.96
The 90% confidence interval for the standard deviation is 149.09 and 234.96. Here we are 90% confident that the population standard deviation of time between failures will lie in between 149.09 and 234.96.
x
( x - x bar )
( x - x bar )^2
971.9
159.035714
25292.35833
770.6
-42.264286
1786.269871
950.4
137.535714
18916.07263
970.3
157.435714
24786.00404
669.8
-143.064286
20467.38993
788.6
-24.264286
588.7555751
962.2
149.335714
22301.15548
914.7
101.835714
10370.51265
896
83.135714
6911.546942
627.4
-185.464286
34397.00138
871.9
59.035714
3485.215527
729.4
-83.464286
6966.287037
885.4
72.535714
5261.429805
1019
206.135714
42491.93259
1134.3
321.435714
103320.9182
523.6
-289.264286
83673.82716
791.9
-20.964286
439.5012875
981.4
168.535714
28404.28689
701
-111.864286
12513.61848
568
-244.864286
59958.51856
649.8
-163.064286
26589.96137
980.7
167.835714
28168.82689
1064
251.135714
63069.14685
703
-109.864286
12070.16134
972.7
159.835714
25547.45547
623.2
-189.664286
35972.54138
430.7
-382.164286
146049.5415
608.3
-204.564286
41846.54711
Total =
891646.7843
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.