Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A survey of Internet users reported that 19% downloaded music onto their compute

ID: 3131516 • Letter: A

Question

A survey of Internet users reported that 19% downloaded music onto their computers. The filing of lawsuits by the recording industry may be a reason why this percent has decreased from the estimate of 27% from a survey taken two years before. Suppose we are not exactly sure about the sizes of the samples. Perform the calculations for the significance tests and 95% confidence intervals under each of the following assumptions. (Round your test statistics to two decimal places and your confidence intervals to four decimal places.) (i) Both sample sizes are 1000. z = 95% C.I. , (ii) Both sample sizes are 1600. z = 95% C.I. , (iii) The sample size for the survey reporting 27% is 1000 and the sample size for the survey reporting 19% is 1600. z = 95% C.I. ,

Explanation / Answer

i.

Formulating the hypotheses          
Ho: p1 - p2   >=   0  
Ha: p1 - p2   <   0  
Here, we see that pdo =    0   , the hypothesized population proportion difference.  
          
Getting p1^ and p2^,          
          
p1^ = x1/n1 =    0.19      
p2 = x2/n2 =    0.27      
          
Also, the standard error of the difference is          
          
sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.018734994      
          
Thus,          
          
z = [p1 - p2 - pdo]/sd =    -4.270084101   [ANSWER]  
          
  
          
For the   95%   confidence level, then  
          
alpha/2 = (1 - confidence level)/2 =    0.025      
z(alpha/2) =    1.959963985      
Margin of error = z(alpha/2)*sd =    0.036719913      
lower bound = p1^ - p2^ - z(alpha/2) * sd =    -0.116719913      
upper bound = p1^ - p2^ + z(alpha/2) * sd =    -0.043280087      
          
Thus, the confidence interval is          
          
(   -0.116719913   ,   -0.043280087 ) [ANSWER]

********************

ii.

Getting p1^ and p2^,          
          
p1^ = x1/n1 =    0.19      
p2 = x2/n2 =    0.27      
          
Also, the standard error of the difference is          
          
sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.014811313      
          
Thus,          
          
z = [p1 - p2 - pdo]/sd =    -5.401276624   [ANSWER, Z]

          
For the   95%   confidence level, then  
          
alpha/2 = (1 - confidence level)/2 =    0.025      
z(alpha/2) =    1.959963985      
Margin of error = z(alpha/2)*sd =    0.029029641      
lower bound = p1^ - p2^ - z(alpha/2) * sd =    -0.109029641      
upper bound = p1^ - p2^ + z(alpha/2) * sd =    -0.050970359      
          
Thus, the confidence interval is          
          
(   -0.109029641   ,   -0.050970359 ) [ANSWER]

**************************

iii.

Getting p1^ and p2^,          
          
p1^ = x1/n1 =    0.19      
p2 = x2/n2 =    0.27      
          
Also, the standard error of the difference is          
          
sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.017125639      
          
Thus,          
          
z = [p1 - p2 - pdo]/sd =    -4.671358629   [ANSWER, Z]  
          
  
          
For the   95%   confidence level, then  
          
alpha/2 = (1 - confidence level)/2 =    0.025      
z(alpha/2) =    1.959963985      
Margin of error = z(alpha/2)*sd =    0.033565635      
lower bound = p1^ - p2^ - z(alpha/2) * sd =    -0.113565635      
upper bound = p1^ - p2^ + z(alpha/2) * sd =    -0.046434365      
          
Thus, the confidence interval is          
          
(   -0.113565635   ,   -0.046434365 ) [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote