The figure shows a rigid assembly of a thin hoop (of mass m = 0.29 kg and radius
ID: 1554836 • Letter: T
Question
The figure shows a rigid assembly of a thin hoop (of mass m = 0.29 kg and radius R = 0.15 m) and a thin radial rod (of length L = 2R and also of mass m = 0.29 kg). The assembly is upright, but we nudge it so that it rotates around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly in the nudge is negligible, what is the assembly's angular speed about the rotation axis when it passes through the upside-down (inverted) orientation? Number UnitsExplanation / Answer
moment of Inertia, I_rod=1/3*m*L^2
I_rod=1/3*m*(2R)^2
I_rod=1/3*0.29*(2*0.15)^2
I_rod=8.7*10^-3 kg.m^2
and
moment of Inertia, I_hoop=Icm+m*x^2
=1/2*m*R^2+m*(L+R)^2
=1/2*m*R^2+m*(2R+R)^2
=1/2*m*R^2+(m*3R)^2
=(1/2+9)*m*R^2
=(1/2+9)*0.29*0.15^2
=61.98*10^-3 kg.m^2
total moment of Inertia, I=Irod+Ihoop
I=8.7*10^-3+61.98*10^-3
I=70.68*10^-3 kg.m^2
by using law of conservation of energy,
1/2*I*w^2=m*g*L+2*m*g*(L+R)
1/2*70.68*10^-3*w^2=m*g*(3L+2R)
1/2*70.68*10^-3*w^2=m*g*(3*2R+2R)
1/2*70.68*10^-3*w^2=0.29*9.8*(8*R)
1/2*70.68*10^-3*w^2=0.29*9.8*(8*0.15)
====> w=9.82 rad/sec
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.