Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. Call Tree The Fibonacci sequence is 0 1 1 2 3 5 8 13 21 ... Each Fibonacci nu

ID: 3668397 • Letter: 1

Question

1. Call Tree

The Fibonacci sequence is

0 1 1 2 3 5 8 13 21 ...

Each Fibonacci number is the sum of the preceding two Fibonacci numbers. The sequence starts with the first two Fibonacci numbers, and is defined recursively as

fib(0) = 0

fib(1) = 1

fib(n) = fib(n - 1) + fib(n - 2)    for n > 1

Draw the call tree for fib(4) b) fib(3) c) fib (5)

2.

write a function

int maximum (int list[], int n)

that recursively finds the largest integer between list[0] and list[n] assume at least one element is in the list. test it with a main program that takes as input an integer count followed by values. output the original values followed by the maximum. do not use a loop in maximum. output the value in the main program, not in the function.

sample input

5 50 30 90 20 80

sample output

original list : 50 30 90 20 80

largest value :90

c++ or java

Explanation / Answer

# include <iostream>
using namespace std;
int max(int[], int);
int main ()
{
int list[40];
int number_size=0;
cout << "How many number would u like to enter ";
cin >> number_size;
for(int i=0; i<number_size;i++)
cin >> list[i];
cout << "original list: " << endl;
for(int i=0; i<number_size; i++);
cout << list[i] << endl;
cout << "largest value: " << max(list, number_size) << endl;
system ("pause");
return 0;
}
int max(int l[], int n)
{
static int count=0;
static int maximum=l[0];
if (maximum<l[count])
maximum=l[count];
count++;
if (count==n)
return maximum;
return max(l,n);
}