Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(Round all intermediate calculations to at least 4 decimal places.) Consider the

ID: 3365798 • Letter: #

Question

(Round all intermediate calculations to at least 4 decimal places.) Consider the following sample data (Use Table 2): x 13 2016 13 23 16 17 11 y 43 23 33 33 33 3134 33 Click here for the Excel Data File a. Find the sample regression line) = bo + b1X. (Negative values should be indicated by minus sign. Round your answers to 2 decimal places.) 43.080.63x b. Construct the 95% confidence interval for E(y) ifx = 15. (Round your answer to 2 decimal places.) to Confidence interval c. Construct the 95% prediction interval for y if x = 15. (Round your answer to 2 decimal places.) Prediction interval to

Explanation / Answer

(a) here part (i) is correct.

(ii) 95% confidence interval for E(y) if x = 15

95% confidence interval = y^ +- tcrit * se

Here tcrit  for dF = n -2 = 6 and alpha = 0.05

tcrit = 2.306

se = standard error = sxy sqrt [ 1/n + (x - x)2 /SSxx]

Here x = 15

x = 16.125 (Mean)

here Sxy = 5.1850 = STEYX(Rang of y, Range of x)

Sxx = 108.875 = DEVSQ(range of X)

these values one can calculate with the help of Excel.

here y^ (x = 15) = 43.08 - 0.63 x = 43.08 - 0.63 * 15 = 33.5867

95% confidence interval = y^ +- tcrit * se

= 33.5867 +- 2.306 * 5.1850 * sqrt [1/8 + (15 - 16.125)2 /108.875]

= 33.5867 +- 4.4195

= (29.1672, 38.0062)

= (29.17, 38.01)

(c) 95% predictioninterval for y if x = 15

95% prediction interval = y^ +- tcrit sxy sqrt [ 1 + 1/n + (x - x)2 /SSxx]

95% prediction interval = 33.5867 +- 2.306 * 5.1850 * sqrt [1 + 1/8 + (15 - 16.125)2 /108.875]

= 33.5867 - 12.7473

= (20.8394, 46.3340)

= (20.84, 46.33)