This question uses R. I am pasting the data below and a screenshot of the questi
ID: 3350430 • Letter: T
Question
This question uses R. I am pasting the data below and a screenshot of the question below that.
Height Weight FG FT APPG
1 6.8 225 0.442 0.672 9.2
2 6.3 180 0.435 0.797 11.7
3 6.4 190 0.456 0.761 15.8
4 6.2 180 0.416 0.651 8.6
5 6.9 205 0.449 0.900 23.2
6 6.4 225 0.431 0.780 27.4
7 6.3 185 0.487 0.771 9.3
8 6.8 235 0.469 0.750 16.0
9 6.9 235 0.435 0.818 4.7
10 6.7 210 0.480 0.825 12.5
11 6.9 245 0.516 0.632 20.1
12 6.9 245 0.493 0.757 9.1
13 6.3 185 0.374 0.709 8.1
14 6.1 185 0.424 0.782 8.6
15 6.2 180 0.441 0.775 20.3
16 6.8 220 0.503 0.880 25.0
17 6.5 194 0.503 0.833 19.2
18 7.6 225 0.425 0.571 3.3
19 6.3 210 0.371 0.816 11.2
20 7.1 240 0.504 0.714 10.5
21 6.8 225 0.400 0.765 10.1
22 7.3 263 0.482 0.655 7.2
23 6.4 210 0.475 0.244 13.6
24 6.8 235 0.428 0.728 9.0
25 7.2 230 0.559 0.721 24.6
26 6.4 190 0.441 0.757 12.6
27 6.6 220 0.492 0.747 5.6
28 6.8 210 0.402 0.739 8.7
29 6.1 180 0.415 0.713 7.7
30 6.5 235 0.492 0.742 24.1
31 6.4 185 0.484 0.861 11.7
32 6.0 175 0.387 0.721 7.7
33 6.0 192 0.436 0.785 9.6
34 7.3 263 0.482 0.655 7.2
35 6.1 180 0.340 0.821 12.3
36 6.7 240 0.516 0.728 8.9
37 6.4 210 0.475 0.846 13.6
38 5.8 160 0.412 0.813 11.2
39 6.9 230 0.411 0.595 2.8
40 7.0 245 0.407 0.573 3.2
41 7.3 228 0.445 0.726 9.4
42 5.9 155 0.291 0.707 11.9
43 6.2 200 0.449 0.804 15.4
44 6.8 235 0.546 0.784 7.4
45 7.0 235 0.480 0.744 18.9
46 5.9 105 0.359 0.839 7.9
47 6.1 180 0.528 0.790 12.2
48 5.7 185 0.352 0.701 11.0
49 7.1 245 0.414 0.778 2.8
50 5.8 180 0.425 0.872 11.8
51 7.4 240 0.599 0.713 17.1
52 6.8 225 0.482 0.701 11.6
53 6.8 215 0.457 0.734 5.8
54 7.0 230 0.435 0.764 8.3
Explanation / Answer
Using R
>Data=read.table(file.choose(),header=TRUE,sep=",")
>View(Data)
>names(Data)
> ##Seprate each variable
> Y=Data$APPG
> X1=Data$Height
> X2=Data$Weight
> X3=Data$FG
> X4=Data$FT
> ## Fitted model
> Model=lm( Y ~X1+X2+X3+X4)
> Model
Call:
lm(formula = Y ~ X1 + X2 + X3 + X4)
Coefficients:
(Intercept) X1 X2 X3 X4
4.148707 -3.690499 0.009458 47.940199 11.371019
>
> ##Prediction Interval For Mohmbad_Bamba
>
> newdata=data.frame(X1=7,X2=207 ,X3=0.50 ,X4=0.733)
> Mohmbad_Bamba=predict(Model, newdata, interval="predict")
> Mohmbad_Bamba
fit wr upr
1 12.57817 1.207806 23.94854
Prediction Interval For Mohmbad_Bamba
##Prediction Interval For Joel Berry
> newdata=data.frame(X1=6,X2=195 ,X3=0.426 ,X4=0.774)
> Joel_Berry=predict(Model, newdata, interval="predict")
> Joel_Berry
fit lwr upr
1 13.07381 1.825059 24.32255
Prediction Interval For Joel Berry is (1.825059 , 24.32255)
Prediction Interval For Rowley Alkins
> newdata=data.frame(X1=6.5,X2=220 ,X3=0.463 ,X4=0.733)
> Rowley_Alkins=predict(Model, newdata, interval="predict")
> Rowley_Alkins
fit lwr upr
1 12.77259 1.710366 23.83482
Prediction Interval For Rowley Alkins is (1.71036 , 23.83482) .
>>>>>>>>>>>>>>>> Best of luck :) <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.