ACME company is interesting in making golf balls with maximum traveling distance
ID: 3309331 • Letter: A
Question
ACME company is interesting in making golf balls with maximum traveling distance. They considered three important factors with different levels.
Dimple depth (low, high)
Number of dimples (250,500)
Shape of dimple (circular, elliptical)
Identify the main factors that maximize the travelling distance of the golf ball using full factorial design.
Standard Order (SO)
Experiment Order (EO)
Factor
Distance (m)
1
2
Low
250
Circular
200,250, 225
2
1
Hi
250
Circular
275, 250, 225
3
3
Low
500
Circular
225, 300, 210
4
7
Hi
500
Circular
250, 300, 350
5
6
Low
250
Elliptical
175,225, 200
6
5
Hi
250
Elliptical
320, 330, 350
7
8
Low
500
Elliptical
250, 300, 175
8
4
Hi
500
Elliptical
300, 325, 350
Standard Order (SO)
Experiment Order (EO)
Factor
Distance (m)
1
2
Low
250
Circular
200,250, 225
2
1
Hi
250
Circular
275, 250, 225
3
3
Low
500
Circular
225, 300, 210
4
7
Hi
500
Circular
250, 300, 350
5
6
Low
250
Elliptical
175,225, 200
6
5
Hi
250
Elliptical
320, 330, 350
7
8
Low
500
Elliptical
250, 300, 175
8
4
Hi
500
Elliptical
300, 325, 350
Explanation / Answer
we have ANOVA table here
‘**’
here only d=dimple depth has p-value < 0.05 so that effect has only ignificant in the regression.
hence except dimple depth there is no effect in the regression.
R-code for the problem is
y=c(
200,
250,
225,
275,
250,
225,
225,
300,
210,
250,
300,
250,
175,
225,
200,
320,
330,
350
)
d=as.factor(rep(rep(seq(1,2),each=3),3))
n=as.factor(c(rep(1,6),rep(2,9),rep(1,3)))
s=as.factor(c(rep(1,12),rep(2,6)))
fit=lm(y~d+n+s)
anova(fit)
‘**’
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.