Suppose 100 observations of brass bushing parts are planned to be measured to de
ID: 3304523 • Letter: S
Question
Suppose 100 observations of brass bushing parts are planned to be measured to design X-bar and R charts. Please design the sample size and sample frequency. Assume that the production rate is 30 parts per hour and you are required to catch a one-sigma mean shift within an hour. Show clearly how to use rational subgrouping concept to design the sample size and frequency for both X-bar and R charts. Use the data collected and construct both X-bar and R charts in Minitab. Observations shown below.1.00100 1.00500 1.01500 1.02000 1.01000 1.01500 1.00000 1.01000 0.99900 1.01000 0.99600 1.00000 1.00400 0.99500 1.00600 0.98500 1.01000 1.00000 0.99500 1.00000 1.00000 0.99900 1.01400 1.00900 1.00500 1.02500 1.00400 1.00400 0.99900 1.00000 1.01400 1.00900 0.99400 1.00900 0.99900 1.00400 1.00900 0.98900 1.00300 1.00900 0.99600 0.99600 1.00000 1.00100 1.00100 1.00100 0.99500 1.00000 1.01000 0.99400 1.00000 1.00500 1.01500 1.00500 0.99000 1.00500 1.01500 1.00000 1.00500 0.99000 0.99700 1.00000 1.00200 1.00100 1.00600 1.00500 1.01000 1.01500 1.00000 1.00000 1.01500 0.99500 1.00500 1.01000 1.01000 1.00600 0.99900 1.00600 1.00500 1.00100 1.00700 0.99500 1.00700 0.99900 1.01000 0.99100 0.99600 1.00600 1.01900 1.00600 1.00500 1.00500 1.00100 1.00200 1.01700 0.99900 0.99300 1.00100 1.01600 0.99000
Suppose 100 observations of brass bushing parts are planned to be measured to design X-bar and R charts. Please design the sample size and sample frequency. Assume that the production rate is 30 parts per hour and you are required to catch a one-sigma mean shift within an hour. Show clearly how to use rational subgrouping concept to design the sample size and frequency for both X-bar and R charts. Use the data collected and construct both X-bar and R charts in Minitab. Observations shown below.
1.00100 1.00500 1.01500 1.02000 1.01000 1.01500 1.00000 1.01000 0.99900 1.01000 0.99600 1.00000 1.00400 0.99500 1.00600 0.98500 1.01000 1.00000 0.99500 1.00000 1.00000 0.99900 1.01400 1.00900 1.00500 1.02500 1.00400 1.00400 0.99900 1.00000 1.01400 1.00900 0.99400 1.00900 0.99900 1.00400 1.00900 0.98900 1.00300 1.00900 0.99600 0.99600 1.00000 1.00100 1.00100 1.00100 0.99500 1.00000 1.01000 0.99400 1.00000 1.00500 1.01500 1.00500 0.99000 1.00500 1.01500 1.00000 1.00500 0.99000 0.99700 1.00000 1.00200 1.00100 1.00600 1.00500 1.01000 1.01500 1.00000 1.00000 1.01500 0.99500 1.00500 1.01000 1.01000 1.00600 0.99900 1.00600 1.00500 1.00100 1.00700 0.99500 1.00700 0.99900 1.01000 0.99100 0.99600 1.00600 1.01900 1.00600 1.00500 1.00500 1.00100 1.00200 1.01700 0.99900 0.99300 1.00100 1.01600 0.99000
Suppose 100 observations of brass bushing parts are planned to be measured to design X-bar and R charts. Please design the sample size and sample frequency. Assume that the production rate is 30 parts per hour and you are required to catch a one-sigma mean shift within an hour. Show clearly how to use rational subgrouping concept to design the sample size and frequency for both X-bar and R charts. Use the data collected and construct both X-bar and R charts in Minitab. Observations shown below.
1.00100 1.00500 1.01500 1.02000 1.01000 1.01500 1.00000 1.01000 0.99900 1.01000 0.99600 1.00000 1.00400 0.99500 1.00600 0.98500 1.01000 1.00000 0.99500 1.00000 1.00000 0.99900 1.01400 1.00900 1.00500 1.02500 1.00400 1.00400 0.99900 1.00000 1.01400 1.00900 0.99400 1.00900 0.99900 1.00400 1.00900 0.98900 1.00300 1.00900 0.99600 0.99600 1.00000 1.00100 1.00100 1.00100 0.99500 1.00000 1.01000 0.99400 1.00000 1.00500 1.01500 1.00500 0.99000 1.00500 1.01500 1.00000 1.00500 0.99000 0.99700 1.00000 1.00200 1.00100 1.00600 1.00500 1.01000 1.01500 1.00000 1.00000 1.01500 0.99500 1.00500 1.01000 1.01000 1.00600 0.99900 1.00600 1.00500 1.00100 1.00700 0.99500 1.00700 0.99900 1.01000 0.99100 0.99600 1.00600 1.01900 1.00600 1.00500 1.00500 1.00100 1.00200 1.01700 0.99900 0.99300 1.00100 1.01600 0.99000
Explanation / Answer
install.packages("qcc")
library(qcc)
x=c(1.00100,
1.00500,
1.01500,
1.02000,
1.01000,
1.01500,
1.00000,
1.01000,
0.99900,
1.01000,
0.99600,
1.00000,
1.00400,
0.99500,
1.00600,
0.98500,
1.01000,
1.00000,
0.99500,
1.00000,
1.00000,
0.99900,
1.01400,
1.00900,
1.00500,
1.02500,
1.00400,
1.00400,
0.99900,
1.00000,
1.01400,
1.00900,
0.99400,
1.00900,
0.99900,
1.00400,
1.00900,
0.98900,
1.00300,
1.00900,
0.99600,
0.99600,
1.00000,
1.00100,
1.00100,
1.00100,
0.99500,
1.00000,
1.01000,
0.99400,
1.00000,
1.00500,
1.01500,
1.00500,
0.99000,
1.00500,
1.01500,
1.00000,
1.00500,
0.99000,
0.99700,
1.00000,
1.00200,
1.00100,
1.00600,
1.00500,
1.01000,
1.01500,
1.00000,
1.00000,
1.01500,
0.99500,
1.00500,
1.01000,
1.01000,
1.00600,
0.99900,
1.00600,
1.00500,
1.00100,
1.00700,
0.99500,
1.00700,
0.99900,
1.01000,
0.99100,
0.99600,
1.00600,
1.01900,
1.00600,
1.00500,
1.00500,
1.00100,
1.00200,
1.01700,
0.99900,
0.99300,
1.00100,
1.01600,
0.99000)
xx=cbind(x,x,x,x,x)
q=qcc(xx, type="R", nsigmas=1)
q1=qcc(xx, type="xbar", nsigmas=1)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.