A closed, hydrostatic, ideal-gas system is caused to follow the following revers
ID: 3278761 • Letter: A
Question
Explanation / Answer
given
P1 = 1 atm = 1.01*10^5 Pa
T1 = 300 K
V1 = 6 lit = 0.006 m^3
using ideal gas law
PV = nRT
n = P1V1/RT1 = 1.01*10^5*0.006/8.31*300 = 0.243
process 1 -> P/V = constant = k1
P2 = 2atm
T2 = ?
V2 = ?
using P1/V1 = P2/V2
V2 = P2*V1/P1 = 2*0.006/1 = 0.012 m^3
using ideal gas law
P2V2 = nRT2
2*1.01*10^5 * 0.012 = 0.243*8.31*T2
T2 = 1200.398 K
work done in process 1, dW = PdV
now, P = k1*V
so, dW = k1*VdV
integrating
work done by gas, W1 = P1*(V2^2 - V1^2)/2*V1 = 1.01*10^5(0.012^2 - 0.006^2)/2*0.006 = 909 J
internal energy change of gas, U1 = nCv(T2 - T1)
Cv = 3R/2
U1 = 0.243*3*8.31(1200.398-300)/2 = 2727.301 J
process 2 -> V*T constnat = k2
P3 = 3.556 atm
T3 = ?
V3 = 9 lit = 0.009 m^3
using V2T2 = V3T3
T3 = V2T2/V3 = 0.012*1200.398/0.009 = 1600.5306 K
work done in process 2, dW = PdV
now, P = nRT/V
T = k2/V
P = nRk2/V^2
so, dW = nRk2dV/V^2
integrating
work done by gas, W2 = nR*k2*(1/V2 - 1/V3) = 0.243*8.31*0.009*1600.5306(1/0.012 - 1/0.009) = -807.999 J
internal energy change of gas, U2 = nCv(T3 - T2)
Cv = 3R/2
U2 = 0.243*3*8.31(1600.5306-1200.398)/2 = 1211.999 J
process 3 -> P*T = constant = k3
P4 = ?
T4 = 300 K
V4 = 0.3164 lit = 0.3164*10^-3 m^3
using P3T3 = P4T4
P4 = 3.556*1600.5306/300 = 18.971 atm = 19.16*10^5 Pa
work done in process 3, dW = PdV
now, P = k3/T
and PV = nRT
PV = nR(k3/P)
P^2 = k3*nR/V
P = sqroot(k3*nR)/sqroot(V)
so, dW = sqroot(k3*nR)dv/sqroot(V)
integrating
work done by gas, W3 = 2*sqroot(P4*T4*n*R)[sqroot(V4) - sqroot(V3)] = 2*sqroot(19.16*10^5*300*0.243*8.31)[sqroot(0.3164*10^-3) - sqroot(0.009)] = -5252.156 J
internal energy change of gas, U3 = nCv(T4 - T3)
Cv = 3R/2
U3 = 0.243*3*8.31(300 - 1600.5306)/2 = -3939.300684747 J
process 4 -> T = constant = 300 K
work done in process 4, dW = PdV
PV = nRT = constant
P = nRT/V
so, dW = nRTdV/V
integrating
work done by gas, W4 = nRT4*ln(V1/V4) = 0.243*8.31*300*ln(6/0.3164) = 1782.5681 J
internal energy change of gas, U4 = nCv(T1 - T4) = 0 J
Step number Work done by system Work done on system Internal energy change
1 909 J -- 2727.301 J
2 --- 807.999 J 1211.999 J
3 --- 5252.156 J -3939.300 J
4 1782.5681 J -- 0 J
Net work done by the system = -3368.5869 J [ i.e. work is done on the system]
total internqal energy change = 0 J
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.