Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

2. From the data in the table below, estimate two regression models using a calc

ID: 3277754 • Letter: 2

Question

2. From the data in the table below, estimate two regression models using a calculator. Show your work in a table (see slide 13) Model 1: Gold price,-, + 2CPL + ut Model 2: NYSE Index.-A+ 2CPle+ ut Gold Prices, Consumer Price Index and the New York Stock Exchange, 1977-1991 YEAR PRICE CPI NYSE 147.98 193.44 307.62 612.51 459.61 376.01 423.83 53.69 53.70 58.32 68.10 74.02 68.93 92.63 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 60.60 65.20 72.60 82.40 90.90 96.50 99.60 360.29103.90 92.46 317.30 107.60 108.90 367.87109.60 136.00 446.50 113.60 161.70 436.93 118.30 149.91 381.28 124.00 180.02 384.08 130.70 183.46 362.04136.20 206.33 where YEAR: Year GOLD PRICE: Price of Gold at New York, $ Per Troy Ounce CPI Consumer Price Index, 1982-1984: 100 NYSE New York Stock Exchange Index, December 31, 1965-100 For each model a) Find 1 and 2, their standard errors and r2. b) write down the equation in the format Yi = + RM

Explanation / Answer

Answer:

Model 1

Regression Analysis

0.150

n

15

r

0.388

k

1

Std. Error

104.694

Dep. Var.

price

ANOVA table

Source

SS

df

MS

F

p-value

Regression

25,188.9072

1  

25,188.9072

2.30

.1535

Residual

142,490.6951

13  

10,960.8227

Total

167,679.6023

14  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=13)

p-value

95% lower

95% upper

Intercept

186.1833

125.4039

1.485

.1615

-84.7353

457.1019

CPI

1.8420

1.2151

1.516

.1535

-0.7830

4.4670

The regression equation is

Price =186.1833 + 1.8420*CPI

Standard error=104.694

R square =0.150

Model 2

Regression Analysis

0.868

n

15

r

0.932

k

1

Std. Error

19.842

Dep. Var.

NYSE

ANOVA table

Source

SS

df

MS

F

p-value

Regression

33,663.9722

1  

33,663.9722

85.51

4.43E-07

Residual

5,118.0592

13  

393.6969

Total

38,782.0314

14  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=13)

p-value

95% lower

95% upper

Intercept

-102.0606

23.7668

-4.294

.0009

-153.4056

-50.7155

CPI

2.1294

0.2303

9.247

4.43E-07

1.6319

2.6269

The regression equation is

NYSE = -102.0606 + 2.1294*CPI

Standard error=19.842

R square =0.868

Regression Analysis

0.150

n

15

r

0.388

k

1

Std. Error

104.694

Dep. Var.

price

ANOVA table

Source

SS

df

MS

F

p-value

Regression

25,188.9072

1  

25,188.9072

2.30

.1535

Residual

142,490.6951

13  

10,960.8227

Total

167,679.6023

14  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=13)

p-value

95% lower

95% upper

Intercept

186.1833

125.4039

1.485

.1615

-84.7353

457.1019

CPI

1.8420

1.2151

1.516

.1535

-0.7830

4.4670

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote