Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A construction company is planning to build a new holiday camping site. There wi

ID: 3199024 • Letter: A

Question

A construction company is planning to build a new holiday camping site. There will be three types of accommodation available here, Standard, Extra, Luxury. The capital finance available for the planning, construction and advertising costs of each type and the cost per unit are given in the table below.

Basic (€)

Extra (€)

Luxury (€)              

Capital (€)

Planning

8

8

12

4600

Construction

12

24

18

12000

Advertising

6

4

6

2400

Yearly profit

€220

€320

€300

Use the simplex method and slack variables to determine how many of each type of accommodation should be built to obtain a maximum yearly profit?

Basic (€)

Extra (€)

Luxury (€)              

Capital (€)

Planning

8

8

12

4600

Construction

12

24

18

12000

Advertising

6

4

6

2400

Yearly profit

€220

€320

€300

Explanation / Answer

Let the number of basic be x

Let the number of extra be y

Let the number of luxury be z

Constraints:

8x + 8y + 12z <= 4600 (Planning constraints)

12x + 24y + 18z <= 12000 (Construction constraints)

6x + 4y + 6z <= 2400 (advertising constraints)

Maximize

Z = 220x + 320y + 300z

Other constraints, the value of x,y and z all must be zero

Now solving using simplex tableau method

Tableau #1
x y z s1 s2 s3 s4 s5 s6 p
8 8 12 1 0 0 0 0 0 0 4600
12 24 18 0 1 0 0 0 0 0 12000  
6 4 6 0 0 1 0 0 0 0 2400
1 0 0 0 0 0 -1 0 0 0 0   
0 1 0 0 0 0 0 -1 0 0 0   
0 0 1 0 0 0 0 0 -1 0 0   
-220 -320 -300 0 0 0 0 0 0 1 0   

Tableau #2
x y z s1 s2 s3 s4 s5 s6 p
8 8 12 1 0 0 0 0 0 0 4600
12 24 18 0 1 0 0 0 0 0 12000  
6 4 6 0 0 1 0 0 0 0 2400
-1 0 0 0 0 0 1 0 0 0 0   
0 1 0 0 0 0 0 -1 0 0 0   
0 0 1 0 0 0 0 0 -1 0 0   
-220 -320 -300 0 0 0 0 0 0 1 0   

Tableau #3
x y z s1 s2 s3 s4 s5 s6 p
8 8 12 1 0 0 0 0 0 0 4600
12 24 18 0 1 0 0 0 0 0 12000  
6 4 6 0 0 1 0 0 0 0 2400
-1 0 0 0 0 0 1 0 0 0 0   
0 -1 0 0 0 0 0 1 0 0 0   
0 0 1 0 0 0 0 0 -1 0 0   
-220 -320 -300 0 0 0 0 0 0 1 0   

Tableau #4
x y z s1 s2 s3 s4 s5 s6 p
8 8 12 1 0 0 0 0 0 0 4600
12 24 18 0 1 0 0 0 0 0 12000  
6 4 6 0 0 1 0 0 0 0 2400
-1 0 0 0 0 0 1 0 0 0 0   
0 -1 0 0 0 0 0 1 0 0 0   
0 0 -1 0 0 0 0 0 1 0 0   
-220 -320 -300 0 0 0 0 0 0 1 0   

Tableau #5
x y z s1 s2 s3 s4 s5 s6 p
4 0 6 1 -0.333333 0 0 0 0 0 600
0.5 1 0.75 0 0.0416667 0 0 0 0 0 500
4 0 3 0 -0.166667 1 0 0 0 0 400
-1 0 0 0 0 0 1 0 0 0 0
0.5 0 0.75 0 0.0416667 0 0 1 0 0 500
0 0 -1 0 0 0 0 0 1 0 0
-60 0 -60 0 13.3333 0 0 0 0 1 160000   

Tableau #6
x y z s1 s2 s3 s4 s5 s6 p
0 0 3 1 -0.166667 -1 0 0 0 0 200   
0 1 0.375 0 0.0625 -0.125 0 0 0 0 450   
1 0 0.75 0 -0.0416667 0.25 0 0 0 0 100   
0 0 0.75 0 -0.0416667 0.25 1 0 0 0 100   
0 0 0.375 0 0.0625 -0.125 0 1 0 0 450   
0 0 -1 0 0 0 0 0 1 0 0   
0 0 -15 0 10.8333 15 0 0 0 1 166000

Tableau #7
x y z s1 s2 s3 s4 s5 s6 p
0 0 1 0.333333 -0.0555556 -0.333333 0 0 0 0 66.6667   
0 1 0 -0.125 0.0833333 0 0 0 0 0 425   
1 0 0 -0.25 0 0.5 0 0 0 0 50
0 0 0 -0.25 0 0.5 1 0 0 0 50
0 0 0 -0.125 0.0833333 0 0 1 0 0 425   
0 0 0 0.333333 -0.0555556 -0.333333 0 0 1 0 66.6667   
0 0 0 5 10 10 0 0 0 1 167000

Hence the maximum profit will be occuring when Optimal Solution: p = 166799; x = 50, y = 425, z = 66

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote