In a sample of 100 boxes of a certain type, the average compressive strength was
ID: 3182836 • Letter: I
Question
Explanation / Answer
a. z value for 95% is 1.96 mean=6230 and sd=221
Margin of Error=E=z*sd/sqrt(100)=43.316
CI=mean+/-E=6230+/-43.316=( 6186.684, 6273.316)
b. z value for 99% is 2.58
Margin of Error=E= 57.018
CI=mean+/-E=( 6172.982, 6287.018)
c. We have UCL=mean+E=6255 and LCL=mean-E=6205
So 2E=6255-6205=50
Hence E=50
Now E=sd*z/sqrt(n)
So z=E*sqrt(n)/sd=2.3
We know P(-2.3<z<2.3)=0.98
So level of confidence is 98%
d. E=25, z=1.96 and sd=221
So using formula of E=z*sd/sqrt(n)
n=(z*sd/E)^2
n=300
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.