Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A manufacturer produces both a deluxe and a standard model of an automatic sande

ID: 3156934 • Letter: A

Question

A manufacturer produces both a deluxe and a standard model of an automatic sander designed for home use. Selling prices obtained from a sample of retail outlets follow. The manufacturer's suggested retail prices for the two models show a $10 price differential. Use a .05 level of significance and test that the mean difference between the prices of the two models is $10. Develop the null and alternative hypotheses. H_0 = mu_d equalto 10 H_a = mu_d not equal to 10 Calculate the value of the test statistic. If required enter negative values as negative numbers, (to 2 decimals). -1.99 The p-value is between .20 and.40 Can you conclude that the price differential is not equal to $10? No What is the 95% confidence interval for the difference between the mean prices of the two models (to 2 decimals)?

Explanation / Answer

Formulating the null and alternative hypotheses,              
              
Ho:   ud   =   10  
Ha:   ud   =/   10  
At level of significance =    0.05          
As we can see, this is a    two   tailed test.      
The differences are

14
9
9
8
10
5
6
              
Calculating the standard deviation of the differences (third column):              
              
s =    4.981024599          
              
Thus, the standard error of the difference is sD = s/sqrt(n):              
              
sD =    1.882650338          
              
Calculating the mean of the differences (third column):              
              
XD =    8.714285714          
              
As t = [XD - uD]/sD, where uD = the hypothesized difference =    10   , then      
              
t =    -0.682927817   [ANSWER, TEST STATISTIC]

***********************************************      
              
For the   0.95   confidence level,      
              
alpha/2 = (1 - confidence level)/2 =    0.025          
t(alpha/2) =    2.446911851          
              
lower bound = [X1 - X2] - t(alpha/2) * sD =    4.107606291          
upper bound = [X1 - X2] + t(alpha/2) * sD =    13.32096514          
              
Thus, the confidence interval is              
              
(   4.107606291   ,   13.32096514   ) [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote