Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

13)A sample of 20 cigarettes is tested to determine nicotine content and the ave

ID: 3152079 • Letter: 1

Question

13)A sample of 20 cigarettes is tested to determine nicotine content and the average value observed was 1.2mg. Compute a 99 percent two-sided confidence interval for the mean nicotine content of a cigarette if it is known that the standard deviation of a cigarette's nicotine content is .2mg.

14)In problem 13, suppose that the population variance is not known in advance of the experiment. If the sample variance is .04, compute a 99 percent two-sided confidence interval for the mean nicotine content.

15) In Problem 14, compute a value c for which we can assert "with 99 percent confidence" that c is larger than the mean nicotine content of a cigarette.

Explanation / Answer

13.

We know sigma, so we can use z distirbution.

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    1.2          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    0.2          
n = sample size =    20          
              
Thus,              
Margin of Error E =    0.115194588          
Lower bound =    1.084805412          
Upper bound =    1.315194588          
              
Thus, the confidence interval is              
              
(   1.084805412   ,   1.315194588   ) [ANSWER]

*************************

14.

As this is just a sample standard deviation, we use t distiribution.

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    1.2          
t(alpha/2) = critical t for the confidence interval =    2.860934606          
s = sample standard deviation =    0.2          
n = sample size =    20          
df = n - 1 =    19          
Thus,              
Margin of Error E =    0.127944885          
Lower bound =    1.072055115          
Upper bound =    1.327944885          
              
Thus, the confidence interval is              
              
(   1.072055115   ,   1.327944885   ) [ANSWER]

******************************

15.

We can take any value above 1.3279. Hence, we can use

c = 1.35 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Chat Now And Get Quote