please answer with calculation details, thank you! Find the greatest common divi
ID: 2960940 • Letter: P
Question
please answer with calculation details, thank you!
Find the greatest common divisor of each of the following pairs p(x) and q(x) of polynomials. If d(x) = gcd(p(x). q(x)), find two polynomials a(x) and b(x) such that a(x)p(x) + b(x)q(x) = d(x). p(x) = 7x3 + 6x2 - 8x + 4 and q(x) = x3 + x - 2. where p{x), q(x) Q[x] p(x) = x3 + x2 - x + I and q(x) - x3 + x - 1, where p(x),q(x) Z2[x] p(x) = x3 + x2 - Ax + 4 and q(x) = x3 + 3x - 2, where p(x), q(x) Z5[x] p(x) = x3 - 2x + 4 and q(x) = 4x3 + x + 3, where p(x),q(x) Q[x]Explanation / Answer
(a)
I'll write the division sucessively, this is the polynom division algorithm
7x^3+6x^2-8x+4 | x^3+x-2
7x^3-7x+14 | 7
6x^2-15x+18
So : 7x^3+6x^2-8x+4 = 7(x^3+x-2) + 6x^2-15x+18 => 6x^2-15x+18 = p(x) - 7q(x)
We continue iteratively :
x^3+x-2 | 6x^2-15x+18
x^3-15/6x^2+18/6x | 1/6x+5/12
5/2x^2-2x-2 |
5/2x^2-25/4x+15/2 |
17/4x-19/2 |
So : x^3+x-2 = (6x^2-15x+18)*(1/6x+5/12)+(17/4x-19/2)
=> q(x) = (p(x)-7q(x))*(1/6x+5/12)+(17/4x-19/2)
=> (17/4x-19/2) = q(x)-(p(x)-7q(x))(1/6x+5/12)
=> (17/4x-19/2) = -(1/6x+5/12)p(x)+(7/6x+47/12)q(x)
And again :
6x^2-15x+18 | 17/4x-19/2
6x^2-228/17x | 24/17x-108/289
-27/17x+18 |
-27/17x+1026/289 |
4176/289 |
6x^2-15x+18 = (17/4x-19/2)(24/17x-108/289) + 4176/289
The algorithm stops and d(x) = gcd(p(x),q(x))=1
Using all the previous equality we get :
=> 1 =289/4176*((p(x) - 7q(x))-(-(1/6x+5/12)p(x)+(7/6x+47/12)q(x) )((24/17x-108/289)))
=> 1 =289/4176*(p(x)*(4/17x^2+152/289x+244/289)+q(x)(-28/17x^2-1472/289x-1600/289))
=> 1 = (17/1044x^2+19/522x+61/1044)p(x) + (-119/1044x^2-92/261x-100/261)q(x)
so a(x) = 17/1044x^2+19/522x+61/1044 and b(x) = -119/1044x^2-92/261x-100/261
(I checked with a calculator and a(x)p(x)+b(x)q(x) = 1 is correct with the previous polynom...yes they are ugly !)
(b)
x^3+x^2-x+1 | x^3+x-1
x^3+x-1 | 1
x^2-2x+2(mod2) |
x^2
so x^3+x^2-x+1 = (x^3+x-1)*1 + x^2 => x^2 = p(x)-q(x)
x^3+x-1 | x^2
x^3 | x
x-1 |
So x^3+x-1 = x^2*x + (x-1)
(x-1) = q(x)-x*(p(x)-q(x)) = -xp(x)+(1+x)q(x)
x^2 | x-1
x^2-x | x+1
x
x-1
1
So x^2 = (x-1)(x+1)+1
So d(x) = gcd(p(x),q(x)) = 1
Using all the previous equality we get :
=> 1 = (p(x)-q(x))-(x+1)(-xp(x)+(1+x)q(x)) = p(x)(x^2+x+1)+q(x)*(-x^2)
So a(x) = x^2+x+1 and b(x)=-x^2
(c)
x^3+x^2-4x+4 | x^3+3x-2
x^3+3x-2 | 1
x^2-7x+6 (mod 5) |
x^2+3x+1 |
So x^3+x^2-4x+4 = (x^3+3x-2) + (x^2+3x+1) => (x^2+3x+1) = p(x)-q(x)
x^3+3x-2 | x^2+3x+1
x^3+3x^2+x | x-3
-3x^2+2x-2 |
-3x^2-9x-3 |
11x+1 (mod 5)|
x+1
So x^3+3x-2 = (x^2+3x+1)(x-3) + (x+1) => (x+1) = q(x)-(p(x)-q(x))(x-3) = (3-x)p(x)+(x-2)q(x)
x^2+3x+1 | x+1
x^2+x | x+2
2x+1 |
2x+2 |
-1(mod 5)|
4
So (x^2+3x+1) = (x+1)(x+2) + 4
So again gcd(p(x),q(x))=1
Since 4=-1 (mod 5) :
=> -1 = ( (p(x)-q(x)) - (x+2)*( (3-x)p(x)-(x-2)q(x))) = ( p(x)(1+(x-3)(x+2)) + q(x)(-1+(2-x)(2+x)))
=> 1 = p(x)(-x^2+x) + q(x)(x^2-3)
So a(x)=-x^2+x and b(x)=x^2-3
(d)
x^3-2x+4 | 4x^3+x+3
x^3+1/4x+3/4 | 1/4
-9/4x+13/4 |
So x^3-2x+4 = 1/4(4x^3+x+3) + (-9/4x+13/4)
=> (-9/4x+13/4) = p(x)-1/4q(x)
4x^3+x+3 | -9/4x+13/4
4x^3-52/9x^2 | -16/9x^2-208/81x
52/9x^2+x+3 |
52/9x^2-676/81x |
757/81x+3 |
So : 4x^3+x+3 = (-9/4x+13/4)(-16/9x^2-208/81x) + (757/81x+3)
=> 757/81x+3 = q(x)-(p(x)-1/4q(x))(-16/9x^2-208/81x)
=> 757/81x+3 = p(x)(16/9x^2+208/81x) + q(x)(-36/81x^2-52/81x+1)
-9/4x+13/4 | 757/81x+3
-9/4x-2187/3028 | -729/3028
3007/757 |
So -9/4x+13/4 = (757/81x+3)*-729/3028 + 3007/757
Again gcd(p(x),q(x))=1
And :
1 = 757/3007 * ( p(x)-1/4q(x) +729/3028(p(x)(16/9x^2+208/81x) + q(x)(-36/81x^2-52/81x+1)))
1 = p(x)*(324x^2+468x+757)/3007 + q(x)(-81x^2-117x-7))/3007
So a(x) = 1/3007*(324x^2+468x+757) and b(x) = 1/3007 * (-81x^2-117x-7)
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.