How did this person get the power of u^-2/3? integral_-1^1 3 Squareroot sec(x).
ID: 2894025 • Letter: H
Question
How did this person get the power of u^-2/3? integral_-1^1 3 Squareroot sec(x). Tan(x) dx = integral 3 Squareroot sec(x). Tan(x) dx Apply integral substitution u = sec(x): du = u Tan(x) dx. = integral 1/u^2/3 du = integral u^-2/3 du. = u^-2/3+1/-2/3+1 = (sec(x))^-2/3+1/-2/3+1 = 3 3 Squareroot sec(x) + C integral_-1^1 3 Squareroot sec(x) middot Tan(x) dx = [3 3 Squareroot sec(x)]_1^1 Therefore for an add function f(x) = -f(-x): integral_a^a f(x) dx = 0 Therefore integral_-1^1 3 Squareroot sec(x) middot Tan(x) dx = 0Explanation / Answer
Solution:
This is right;
sec(x) * tan(x) dx
Apply integral substitution;
u = sec(x) => du = sec(x) tan(x) dx => du = u tan(x) dx => tan(x) dx = (1/u) du
u * (1/u) du
= (u)^(1/3) * (1/u) du
= (u)^(1/3) * (u)^(-1) du
= (u)^(1/3 - 1) du
= (u)^(-2/3) du
This is the complete process to get u^(-2/3).
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.