The bent wire circuit shown in the figure ( Figure 1 ) is in a region of space w
ID: 2138178 • Letter: T
Question
The bent wire circuit shown in the figure (Figure 1) is in a region of space with a uniform magnetic field in the +zdirection. Current flows through the circuit in the direction indicated. Note that segments 2 and 5 are oriented parallel to the z axis; the other pieces are parallel to either the x or y axis. The bent wire circuit shown in the figure (Figure 1) is in a region of space with a uniform magnetic field in the +zdirection. Current flows through the circuit in the direction indicated. Note that segments 2 and 5 are oriented parallel to the z axis; the other pieces are parallel to either the x or y axis. The bent wire circuit shown in the figure (Figure 1) is in a region of space with a uniform magnetic field in the +zdirection. Current flows through the circuit in the direction indicated. Note that segments 2 and 5 are oriented parallel to the z axis; the other pieces are parallel to either the x or y axis. The bent wire circuit shown in the figure (Figure 1) is in a region of space with a uniform magnetic field in the +zdirection. Current flows through the circuit in the direction indicated. Note that segments 2 and 5 are oriented parallel to the z axis; the other pieces are parallel to either the x or y axis. Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part A Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part B Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part C Determine the direction of the magnetic force along segment 3, which carries current in the +y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part D Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part E Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part F Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Part G Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Figure 1 of 1 The bent wire circuit shown in the figure (Figure 1) is in a region of space with a uniform magnetic field in the +zdirection. Current flows through the circuit in the direction indicated. Note that segments 2 and 5 are oriented parallel to the z axis; the other pieces are parallel to either the x or y axis. Determine the direction of the magnetic force along segment 1, which carries current in the -x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Determine the direction of the magnetic force along segment 2, which carries current in the -z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Determine the direction of the magnetic force along segment 4, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Determine the direction of the magnetic force along segment 5, which carries current in the +z direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Determine the direction of the magnetic force along segment 6, which carries current in the +x direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0. Determine the direction of the magnetic force along segment 7, which carries current in the -y direction. Enter the direction of the force as a sign (+ or -) followed by a coordinate direction (x, y, or z) without spaces. For instance, if you think that the force points in the positive y direction, enter +y. If there is no magnetic force, enter 0.
Explanation / Answer
PART A = +y
PART B = 0
PART C = +x
PART D = -y
PART E = 0
PART F = -y
PART G = -x
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.