3. For a 2-body spinless elastic collision between equal masses (such as when pl
ID: 1795044 • Letter: 3
Question
3. For a 2-body spinless elastic collision between equal masses (such as when playing "pool" or "billiards"-but ignoring spin or "english" here), with one of the particles originally at rest, say the particles collide and fly off at some angle as shownm below. Use momentum and kinetic energy conservation to derive the total angle the balls fly off at (0, + 2 in the picture). HINT: Set up the momentum and kinetic energy conservation equations in two dimensions and then combine the two momentum equations to look like the kinetic energy equation-then the "math cancellation magic" happens and you have a beautiful solution Initial State y at rest m2X V. Final State y V.Explanation / Answer
along y axis
piy = 0
Pfy = m1*v1*sinteta - m2*v2*sintheta2
Pfy = Piy
m1*v1*sinteta1 - m2*v2*sintheta2 =
m1 = m2
v1*sintheta1 = v2*sintheta2
v2 = v1*sintheta1/sintheta2................(1)
initial momentum Pix = m1*u1
after collision
along x axis
final momentum Pfx = m1*v1*costheta + m2*v2*costheta2
Pfx = Pix
m1*v1*costheta1 + m2*v2*costheta2 = m1*u1
m1 = m2
v1*costheta1 + v2*costheta2 = u1..............(2)
using 1 in 2
v1*costheta1 + v1*(sintheta1/sintheta2)*costheta2 = u1
v1*sintheta2*costheta1 + v1*sintheta1*costheta2 = u1*sintheta2
v1*sin(theta1 + theta2) = u1*sintheta2
squaring on both sides
v1^2(sintheta1+sintheta2)^2 = u1^2*(sintheta2)^2 ................(3)
from energy conservation
KEf = KEi
(1/2)*m1*v1^2 + (1/2)*m2*v2^2 = (1/2)*m1*u1^2
m1 = m2
v1^2 + v2^2 = u1^2
v2 = v1*(sintheta1/sintheta2)
v1^2 + v1^2*(sintheta1/sintheta2)^2 = u1^2
v1^2*( (sintheta1)^2 + (sintheta2)^2 ) = u1^2*(sintheta2)^2......(4)
3 = 4
(sin(theta1+theta2))^2 = ( (sintheta1)^2 + (sintheta2)^2 )
(sintheta1*costheta2)^2 + (costheta1*sintheta2)^2 + 2*(sintheta1*sintheta2*costheta1*costheta2) = ( (sintheta1)^2 + (sintheta2)^2 )
(sintheta1)^2 *(costheta2)^2 + ((costheta1)^2*(sintheta2)^2) + 2*(sintheta1*sintheta2*costheta1*costheta2) = ( (sintheta1)^2 + (sintheta2)^2 )
(sintheta1)^2*(1-(costheta2)^2) + (sintheta2)^2*( 1 - (costheta1)^2 ) = 2*(sintheta1*sintheta2*costheta1*costheta2)
(sintheta1)^2*(sintheta2)^2 + (sintheta2)^2*(sintheta1)^2 = 2*(sintheta1*sintheta2*costheta1*costheta2)
2*(sintheta1)^2*(sintheta2)^2 = 2*(sintheta1*sintheta2*costheta1*costheta2)
sintheta1*sintheta2 = costheta1*costheta2
tantheta1*tantheta2 = 1
tantheta1*tantheta2 = tantheta*tan(90-theta)
theta1 = theta
theta2 = 90 - theta
theta1 + theta2 = 90 <<<---------------ANSWER
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.