Why is SDS used in the electrophoresis of proteins? a. SDS coats the protein wit
ID: 172294 • Letter: W
Question
Why is SDS used in the electrophoresis of proteins? a. SDS coats the protein with a negative charge so that the sample can run through the gel. b. SDS is a specific protease that digests large proteins in the sample. c. SDS allows the coomassie blue stain to bind to the proteins in the gel so that they may be visualized. d. SDS adds more molecular weight to each sample so that the proteins do not run off the end of the gel. e. none of the above What is an issue with using 2D-PAGE? a. Hydrophobic proteins may not run as expected due to the hydrophobic surfaces. b. Highly expressed proteins may cover up proteins that are not as abundant but running in the gel nearby. c. Some proteins may not migrate through polyacrylamide and therefore not be represented on the gel. d. Rare cellular proteins are hard to visualize with Coomassie blue protein stain. e. All of the above are issues with 2D-PAGE. Which one of the following is not used during Western blotting? a. secondary antibody with a conjugated detection system b. agarose gel electrophoresis c. non-fat dry milk d. primary antibody that recognizes the protein e. nitrocellulose membrane Which of the following statements about HPLC is not correct? a. There are two phases to HPLC: mobile and stationary. b. Separation, identification, and purification of proteins are just a few of the applications for HPLC. c. The downside to HPLC is that it is not very adaptable due to the availability of stationary phase material. d. Adjusting the experimental conditions, changing the particle size of the stationary phase, and controlling temperature are factors that affect resolution. e. All of the above statements are true.Explanation / Answer
(1) The answer is (a).SDS provide negative charge to protein and masks the positive charge so that it can easily run in the gel.SDS is a detergent (sodium dodecyl sulphate).
(2) The answer is all of the above.because the disadvantages of this technique include a large amount of sample handling, limited reproducibility, and a smaller dynamic range than some other separation methods. It is also not automated for high throughput analysis. Certain proteins are difficult for 2D-PAGE to separate, including those that are in low abundance, acidic, basic, hydrophobic, very large, or very small.
(3) The answer is (c).
(4) The answer is (c)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.