Detail please A particle of mass m moving with a spired has a collision with a p
ID: 1381414 • Letter: D
Question
Detail please
Explanation / Answer
let
m1 = m
m2 = 2*m
let v1 and v2 are the speeds of m1 and m2 after the collision.
Apply consrvation of momentum in x-direction
m*vo = m*v1*cos(theta) + 2*m*v2*cos(theta)
vo = (v1+2*v2)*cos(theta) ---(1)
Apply consrvation of momentum in y-direction
0 = m*v1*sin(theta) - 2*m*v2*sin(theta)
m*v1*sin(theta) = 2*m*v2*sin(theta)
v1 = 2*v2
substitute above value in the equation 1
vo = (2*v2+2*v2)*cos(theta)
= 4*v2*cos(theta)
v2 = vo/(4*cos(theta))
so, v1 = vo/(2*cos(theta))
Eo = 0.5*m*vo^2
Efinal = 0.5*m*v1^2 + 0.5*2*m*v2^2
= 0.5*m*(vo/(2*cos(theta)) )^2 + 0.5*2*m*(vo/(4*cos(theta)) )^2
= 0.1875*m*vo^2/(cos^2(theta))
a) fractional change in the KE = Eo - Efinal / Eo
= (0.5*m*vo^2 - 0.1875*m*vo^2/(cos^2(theta)) )/(0.5*m*vo^2)
= (1 - 0.375/cos^2(theta) )<<<<<<<<<<--------------Answer
b) for Elastic collsion, Efinal -Eo = 0
(0.5*m*vo^2 - 0.1875*m*vo^2/(cos^2(theta)) ) = 0
(1 - 0.375/cos^2(theta) ) = 0
1 = 0.375/cos^2(theta)
cos(theta) = sqrt(0.375)
theta = tan^-1(0.612)
= 31.5 degrees <<<<<<<<<<--------------Answer
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.