Two constant forces act on an object of mass m = 5.00 kg moving in the xy plane
ID: 1337886 • Letter: T
Question
Two constant forces act on an object of mass m = 5.00 kg moving in the xy plane as shown in Figure P7.61. Force is 25.0 N at 35.0 degree, and force F _2 is 42.0 N at 150 degree. At time t = 0, the object is at the origin and has velocity (4.00i + 2.50j ) m/s, Express the two forces in unit-vector notation. Use unit-vector notation for your other answers. Find the total force exerted on the object. Find the object's acceleration. Now, considering the instant t = 3.00 s, find the object's velocity, its position, its kinetic energy from and its kinetic What conclusion can you draw by comparing the answers to parts (f) and (g)?Explanation / Answer
mass m=5 kg
force F1=25 N at 35 degrees
F2=42 N at 150 degrees
a)
force F1=(Fx)i+(Fy)j
F1=F1*cos(theta)i+F1*sin(theta)j
F1=25*cos(35)i+25*sin(35)j
F1=(20.48)i+(14.34)j in N
and
force F2=(Fx)i+(Fy)j
F2=F2*cos(theta)i+F2*sin(theta)j
F2=42*cos(150)i+42*sin(150)j
F2=(-36.37)i+(21)j in N
b)
total force Fnet=F1+F2
Fnet=(20.48)i+(14.34)j + (-36.37)i+(21)j
Fnet=(-15.89)i+(35.34)j in N
c)
acceleration a=Fnet/m
a=(-15.89)i+(35.34)j/5
a=(-3.18)i+7.07)j m/sec^2
d)
at t1=0 sec, v1=4i+2.5j
at t2=3 sec, v2=?
a=v2-v1/(t2-t1)
==>
v2=v1+a(t2-t1)
v2=(4i+2.5j)+(-3.18)i+7.07)j*(3-0)
v2=(4i+2.5j)+(-9.54)i+21.21)j
v2=(-5.54)i+(23.71)j in m/sec
e)
x=v1*t+1/2*a*t^2
x=(4i+2.5j)*3+1/2*(-3.18)i+7.07)j*3^2
x=(-10.31)i+(34.31)j in m
f)
K.E=1/2*m*v2^2
magnitude of v2=sqrt(-5.54^2+23.71^)=23.05 m/se
K.E=1/2*5*(23.05)^2
K.E=1328.25 J
g)
K.E=1/2*m*v1^2+F.dr
=1/2*5*(4^2+2.5^2)+((-15.89)i+(35.34)j.(-10.31)i+(34.31)j)
=55.62+163.82+1212.51
=1431.95 J
the k.E in part f is not equals to part g
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.