A tennis player hits a ball at ground level, giving it an initial velocity of 24
ID: 1310191 • Letter: A
Question
A tennis player hits a ball at ground level, giving it an initial velocity of 24.0m/s at 54.0 degrees above the horizontal.
a) What are the horizontal Vh and vertical Uv components of the ball's initial velocity?
b) how high above the ground does the ball go?
c) how long does it take the ball to reach maximum height
d) what is the balls velocity at its heighest point
e) what is the balls acceleration at its heighest point
f) for how long a time is the ball in the air
g) When this ball lands on the court, how far is it from the place where it was hit?
Explanation / Answer
a) Vh = 24*cos54 = 14.1 m/s
Vv = 24*sin54 = 19.41 m/s
b) H = u^2sin^2(tehta)/2g = 24*sin54/9.8 = 19.234 m
c) t = usin(tehta)/g = 24*sin54/9.8 = 1.9812 s
d) at highest point V = Vh = 14.1 m/s
e) at highest point acceleration = 0
f) t = 2usin(tehta)/g = 3.9625 s
g) R = ucos(tehta)*t = 14.1*3.9625 = 55.87 m
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.