A person standing in Sydney ( = 151, = 34 ) is trying to determine the exact rel
ID: 111326 • Letter: A
Question
A person standing in Sydney ( = 151, = 34 ) is trying to determine the exact relative orientation of a person standing on the summit of Chomolungma ( = 86 55 30” E, = 27 59 16.08”N ).
(a) Using the longitude and latitude coordinates of each location, compute the direction cosine matrix (coordinate transformation) CCS that relates the two local Earth surface frames FES (Sydney) and FEC (Chomolungma).
(b) Verify your answer by performing a second unique set of coordinate transformation rotations.
(c) Describe the relative orientation of the FEC frame up vector with respect to the surface frame in Sydney (FES) in terms of NED components by transforming the location vector of the peak in the Chomolungma frame {0, 0, 8488}m, into the Sydney frame.
Explanation / Answer
Answer:
1) location coordinate, Sydney = 151°, = -34° and chomolunga = 86.925 °, = 27.9878 where , are longitude & latitude.
When rotation from one geodetic point to another point happens through the
longitude rotation (l) = 86.925 – 151 = -64.075
latitude rotation (k) = 27.9878- (-34) = 61.9878
directional cosine matrix =
- sinkcosl -sinksinl cosk
-sin l cos l 0
-coskcosl -cosksinl –sin k
= -0.386 0.794 0.4696
0.8994 0.4372 -0.8828
-0.2053 0.4223 -0.8828
2) apply for any two coordinates,
m1= [0,0,0] and m2= [45, 45, 0]
DCM= 0.49 -0.49 0.7
-0.49 0.7 0
-0.49 -0.49 -0.7
3)
For conversion from FEC to NED system, position vector p,
P= R * (P1-P2) where P2 reference frame taken-point.
Here, p1-P2 = {0,0,0} – {0,0,-8488} = {0,0,8488}
R= sin cos -sin cos
-sin cos 0
-cos cos -cos sin -sin
Then, p= cos *8488
0
-sin * 8488
For Sydney, p= [7036.552 0 4744.792 ] for chomolungma p = [7494.904 0 -3983.4184]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.