Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

2.00x10^-1 M Fe(NO3)3 4.00x10^-4 M NaSCN 0.10 M HNO3 Total mL A1 Table V Total V

ID: 1018284 • Letter: 2

Question

2.00x10^-1 M Fe(NO3)3

4.00x10^-4 M NaSCN

0.10 M HNO3

Total mL

A1 Table

V Total

Vi /Vf / Vtotal

Vi / Vf /Vtotal

S1

2.00

0/ 0 /0

0.10 / 8.19 / 8.09

10.09

S2

2.00

1.06 / 2.00 / 0.94

0.21 / 7.10 / 6.89

9.83

S3

2.00

0.10 / 2.20 / 2.10

0.40 / 6.39 / 5.99

10.09

S4

2.00

0 / 3.01 / 3.01

0 / 4.99 / 4.99

10.00

S5

2.00

0.20 / 4.00 / 3.80

0.01 / 4.30 /4.29

10.09

S6

2.00

0.01 / 5.00 / 4.99

4.30 / 7.60 / 3.30

10.29

A2 Table

Blank

S2

S3

S4

S5

S6

ABS

100

78.9

61.5

50.3

38.7

33.4


1. Prepare a Beer's Law plot an include the equation and best fit line. Force the y-intercept through zero.

2. Set up 3 ICE boxes (E1, E3, and E5) that contain initial concentrations of all species and equilibrium equations of FeSCN^2+ based on the slpe of the line from the Beer's Law plot. Set up species. Using the calculated equilibrium concentrations, find the equilibrium constant for each solution. Calculate the average equilibrium constant for the solutions.

2.00x10^-1 M Fe(NO3)3

4.00x10^-4 M NaSCN

0.10 M HNO3

Total mL

A1 Table

V Total

Vi /Vf / Vtotal

Vi / Vf /Vtotal

S1

2.00

0/ 0 /0

0.10 / 8.19 / 8.09

10.09

S2

2.00

1.06 / 2.00 / 0.94

0.21 / 7.10 / 6.89

9.83

S3

2.00

0.10 / 2.20 / 2.10

0.40 / 6.39 / 5.99

10.09

S4

2.00

0 / 3.01 / 3.01

0 / 4.99 / 4.99

10.00

S5

2.00

0.20 / 4.00 / 3.80

0.01 / 4.30 /4.29

10.09

S6

2.00

0.01 / 5.00 / 4.99

4.30 / 7.60 / 3.30

10.29

Explanation / Answer

(a) We need to work with a number of tables here. First, we calculate the initial concentrations of Fe(NO3)3 and NaSCN in the solution.

The initial concentrations are found out using the following equations:

[Fe3+]0 = (volume of Fe3+ stock added)*(concentration of Fe3+ stock)/(total volume of solution)

[SCN]0 = (volume of SCN- stock added)*(concentration of SCN- stock)/(total volume of solution)

Note that we take only the volume of SCN- added (we do not include the initial and final volumes; we only take the difference).

A1

Vol. of 2.00*10-1 M Fe3+ (mL)

Vol. of 4.00*10-4 M SCN- (mL)

Vol. of 0.10 M HNO3 (mL)

Total volume (mL)

[Fe3+]0 (M)

[SCN-]0 (M)

S1

2.00

0.00

8.09

10.09

0.0396

0.000

S2

2.00

0.94

6.89

9.83

0.0407

4.329*10-5

S3

2.00

2.10

5.99

10.09

0.0396

8.325*10-5

S4

2.00

3.01

4.99

10.00

0.0400

1.204*10-4

S5

2.00

3.80

4.29

10.09

0.0396

1.506*10-4

S6

2.00

4.99

3.30

10.29

0.0389

1.940*10-4

Next, we need to find out the concentrations of [Fe(SCN)2+] by noting the reaction equation as

Fe3+ (aq) + SCN- (aq) --------> [Fe(SCN)2+] (aq)

We note that moles of Fe3+ consumed = moles of [Fe(SCN)2+] produced.

Again, moles of SCN- consumed = moles of [Fe(SCN)2+] produced.

Looking at the above table, we see that Fe3+ is present in large excess in comparison to SCN- Thus, the concentration of [Fe(SCN)2+] will be governed by the moles of SCN- consumed. Thus, we construct the table for Beer’s law as

A2 table

[Fe(SCN)2+]0 (*105) (M)

Absorbance

Blank

0

-

S2

4.329

33.4

S3

8.325

38.7

S4

12.040

50.3

S5

15.060

61.5

S6

19.400

78.9

Absorbance increases with increase in concentration; hence, I have written the values that way. Also note that (0,0) will be a point on the graph (since the absorbance is zero when the concentration is zero). Next, we plot the graph in excel.

We have drawn the best fit line possible. The slope of the plot is 4.2207 (ans)

A1

Vol. of 2.00*10-1 M Fe3+ (mL)

Vol. of 4.00*10-4 M SCN- (mL)

Vol. of 0.10 M HNO3 (mL)

Total volume (mL)

[Fe3+]0 (M)

[SCN-]0 (M)

S1

2.00

0.00

8.09

10.09

0.0396

0.000

S2

2.00

0.94

6.89

9.83

0.0407

4.329*10-5

S3

2.00

2.10

5.99

10.09

0.0396

8.325*10-5

S4

2.00

3.01

4.99

10.00

0.0400

1.204*10-4

S5

2.00

3.80

4.29

10.09

0.0396

1.506*10-4

S6

2.00

4.99

3.30

10.29

0.0389

1.940*10-4