Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. What is the role of hippocampal size in spatial memory? How has this been stu

ID: 9650 • Letter: 1

Question


1.
What is the role of hippocampal size in spatial memory? How has this been studied? In your answer, be sure to include what you learned this week about taxi drivers, individuals such as H.M., and other animals. Feel free to include what you learned in Chapter 6 (page 157-159), about feeding strategies.

2.
Discuss in detail the role of NMDA receptors and AMPA receptors in the induction of LTP. What is the role of protein synthesis? What is a "synaptic dialog?" Who is "talking" to whom and what are they "saying?"

Explanation / Answer

1)Studies conducted on freely moving rats and mice have shown that many hippocampal neurons have "place fields", that is, they fire bursts of action potentials when a rat passes through a particular part of the environment. Evidence for place cells in primates is limited, perhaps in part because it is difficult to record brain activity from freely moving monkeys. Place-related hippocampal neural activity has been reported in monkeys moving around inside a room while seated in a restraint chair; on the other hand, Edmund Rolls and his colleagues instead described hippocampal cells that fire in relation to the place a monkey is looking at, rather than the place its body is located. In humans, cells with location-specific firing patterns have been reported in a study of patients with drug-resistant epilepsy who were undergoing an invasive procedure to localize the source of their seizures, with a view to surgical resection. The patients had diagnostic electrodes implanted in their hippocampus and then used a computer to move around in a virtual reality town. Brain imaging shows that people have more active hippocampi when correctly navigating, as tested in a computer-simulated "virtual" navigation task. Also, there is evidence that the hippocampus plays a role in finding shortcuts and new routes between familiar places. For example, London's taxi drivers must learn a large number of places and the most direct routes between them (they have to pass a strict test, The Knowledge, before being licensed to drive the famous black cabs). A study at University College London by Maguire, et al.. (2000) showed that part of the hippocampus is larger in taxi drivers than in the general public, and that more experienced drivers have bigger hippocampi. Whether having a bigger hippocampus helps an individual to become a cab driver, or if finding shortcuts for a living makes an individual's hippocampus grow is yet to be elucidated. However, in that study Maguire, et al.. examined the correlation between size of the grey matter and length of time that had been spent as a taxi driver, and found a positive correlation between the length of time an individual had spent as a taxi driver and the volume of the right hippocampus. It was found that the total volume of the hippocampus remained constant, from the control group vs. taxi drivers. That is to say that the posterior portion of a taxi driver's hippocampus is indeed increased, but at the expense of the anterior portion. There have been no known detrimental effects reported from this disparity in hippocampal proportions. 2)The NMDA receptor functions as a "molecular coincidence detector". Its ion channel only opens when the following two conditions are met simultaneously: glutamate is bound to the receptor, and the postsynaptic cell is depolarized (which removes the Mg2+ blocking the channel). This property of the NMDA receptor explains many aspects of long term potentiation (LTP) and synaptic plasticity. AMPA receptors (AMPAR) are both glutamate receptors and cation channels that are integral to plasticity and synaptic transmission at many postsynaptic membranes. One of the most widely and thoroughly investigated forms of plasticity in the nervous system is known as long-term potentiation, or LTP. There are two necessary components of LTP: presynaptic glutamate release and postsynaptic depolarization. Therefore, LTP can be induced experimentally in a paired electrophysiological recording when a presynaptic cell is stimulated to release glutamate on a postsynaptic cell that is depolarized. The typical LTP induction protocol involves a “tetanus” stimulation, which is a 100 Hz stimulation for 1 second. When one applies this protocol to a pair of cells, one will see a sustained increase of the amplitude of the excitatory postsynaptic potential (EPSP) following tetanus. This response is very intriguing because it is thought to be the physiological correlate for learning and memory in the cell. In fact, it was recently shown that, following a single paired-avoidance paradigm in mice, LTP could be recorded in some hippocampal synapses in vivo. The molecular basis for LTP has been extensively studied, and AMPARs have been shown to play an integral role in the process. Both GluR1 and GluR2 play an important role in synaptic plasticity. It is now known that the underlying physiological correlate for the increase in EPSP size is a postsynaptic upregulation of AMPARs at the membrane, which is accomplished through the interactions of AMPARs with many cellular proteins.