Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD ! PROVE THE CONCLUSIO

ID: 655858 • Letter: P

Question

PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD !

PROVE THE CONCLUSION USING THE PREMISES PROVIDED!!

Using the FITCH program and the FITCH derivation rules you should make a proof or derivation of Conclusion from P1 through P4. You might not need all of P1 through P4 as premises to prove this.

PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD !

P1: vxvy(WeakPref(x,y)vWeakPref(y,x)) P2: vxvyvz(WeakPref(x,y)AWeakPref(y,z)) WeakPref(x,z)) P3: Vxvy(StrongPref(x,y)-WeakPref(y,x)) P4: vxvy(Indiff(x,y)(WeakPref(y,x)aWeakPref(x,y))) Conclusion: vxvyvz(lndiff(x.y)AStrongPref(z,x))-StrongPref(z.y))

Explanation / Answer

   P1 v P2, P3 & P4, U > V, P1 > U, (P3 v H) > (P2 > J) /- V v ~J

1. ~P1 v P2 Premise
2. P3 & ~P4 Premise
3. U > V Premise
4. ~P1 > U Premise
5. (P3 v H) > (P2 > ~J) Premise
6. P3 2 Simplification
7. P3 v H 6 Addition
8. P2 > ~J 5,7 Modus Ponens
9. ~P1 > V 4,3 Hypothetical Syllogism
10. (P1 > V) & (P2 > J) 9,8 Conjunction
11. V v ~J 1,10 Dilemma

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote