PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD ! PROVE THE CONCLUSIO
ID: 655858 • Letter: P
Question
PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD !
PROVE THE CONCLUSION USING THE PREMISES PROVIDED!!
Using the FITCH program and the FITCH derivation rules you should make a proof or derivation of Conclusion from P1 through P4. You might not need all of P1 through P4 as premises to prove this.
PLEASE PROVIDE THE SOLUTION USING THE FITCH PROGRAM METHOD !
P1: vxvy(WeakPref(x,y)vWeakPref(y,x)) P2: vxvyvz(WeakPref(x,y)AWeakPref(y,z)) WeakPref(x,z)) P3: Vxvy(StrongPref(x,y)-WeakPref(y,x)) P4: vxvy(Indiff(x,y)(WeakPref(y,x)aWeakPref(x,y))) Conclusion: vxvyvz(lndiff(x.y)AStrongPref(z,x))-StrongPref(z.y))Explanation / Answer
P1 v P2, P3 & P4, U > V, P1 > U, (P3 v H) > (P2 > J) /- V v ~J
1. ~P1 v P2 Premise
2. P3 & ~P4 Premise
3. U > V Premise
4. ~P1 > U Premise
5. (P3 v H) > (P2 > ~J) Premise
6. P3 2 Simplification
7. P3 v H 6 Addition
8. P2 > ~J 5,7 Modus Ponens
9. ~P1 > V 4,3 Hypothetical Syllogism
10. (P1 > V) & (P2 > J) 9,8 Conjunction
11. V v ~J 1,10 Dilemma
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.