An iron-carbon alloy initially containing 0.308 wt% C is exposed to an oxygen-ri
ID: 545972 • Letter: A
Question
An iron-carbon alloy initially containing 0.308 wt% C is exposed to an oxygen-rich and virtually carbon-free atmosphere at 1120°C. Under these circumstances the carbon diffuses from the alloy and reacts at the surface with the oxygen in the atmosphere; that is, the carbon concentration at the surface position is maintained essentially at 0.0 wt% C. At what position will the carbon concentration be 0.231 wt% after a 5 h treatment? The value of D at 1120°C is 1.4 × 10-10 m2/s. erf(z) erfz) zerfz) 0.00 0.0000 0.55 0.5633 1.3 0.9340 0.025 0.0282 0.60 0.6039 1.4 0.9523 0.05 0.0564 0.65 0.6420 1.5 0.9661 0.10 0.1125 0.70 0.6778 1.6 0.9763 0.15 0.1680 0.75 0.7112 1.7 0.9838 0.20 0.2227 0.80 0.7421 1.8 0.9891 0.25 0.2763 0.85 0.7707 1.9 0.9928 0.30 0.3286 0.90 .7970 2.0 0.9953 0.35 0.3794 0.95 0.8209 2.2 0.9981 0.40 0.4284 1.0 0.8427 2.0.9993 0.45 0.4755 1.1 0.8802 2.6 0.9998 0.50 0.5205 1.2 0.9103 2.8 0.9999 00165 the tolerance is +/-2%Explanation / Answer
we know that
(Cx-Co)/(Cs-Co)= 1-erf(x/2*sqrt(Dt)), D= diffusivity
where Cx= concentration at x= 0.23%, Cs= 0, Co=0.308 wt%
hence (Cx-Co)/(Cs-Co)= (0.23-0.308)/(0-0.308)= 0.253= 1-erf(x/2*Sqrt(Dt)
erf(x/(2*Sqrt(Dt)= 0.747
Z= (x/(2*sqrt(Dt)
hence erf(Z)=0.747
when erf(Z)=0.7421, Z=0.8 and erf(Z)=0.7707, Z= 0.85
(Z-0.8)/(0.85-0.8) = (0.747-0.7421)/(0.7707-0.7421)
Z=0.8085
Z= x/(2*Sqrt(Dt), t =time in seconds =5hr= 5*60min/hr*60sec/min
x= Z*2*sqrt(Dt)= 0.8085*2*sqrt(1.4*10-10*5*60*60) =0.0025 m
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.