Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A local company manufactures birdseed. One variety consists of wheat. The cpmpan

ID: 454204 • Letter: A

Question

A local company manufactures birdseed. One variety consists of wheat. The cpmpany is trying to determine the optimal mix of buckwheat (X1), sunflower (X2), and poppy (X3) (each in lbs.). Relevant information is provided in the table below. Also, the final mix is required to contain at least 500 lbs. of poppy. Lastly, the total weight of the buckwheat may not exceed the total weight of the sunflower in the final mix.

Nutritional Item

Proportional Content

Total Requirement

Buckwheat

Sunflower

Poppy

Fat

0.04

0.06

0.05

480

       Protein

0.12

0.10

0.10

1200

          Roughage

0.10

0.15

0.07

1500

Cost/lb.

$0.18

$0.10

$0.11

The output of the linear program is given on the following page.

LINEAR PROGRAMMING PROBLEM

MIN 0.18X1+0.1X2+0.11X3

     S.T.

       1) .04X1+.06X2+.05X3>480

       2) .12X1+.1X2+.1X3>1200

       3) .1X1+.15X2+.07X3<1500

       4) 1X3>500

       5) 1X1-1X2<0

OPTIMAL SOLUTION

Objective Function Value =        1237.500

      Variable             Value             Reduced Costs  

   --------------     ---------------      ------------------

         X1                     0.000                   0.050

         X2                  8250.000                   0.000

         X3                  3750.000                   0.000

     Constraint        Slack/Surplus           Dual Prices   

   --------------     ---------------      ------------------

         1                    202.500                   0.000

         2                      0.000                  -1.188

         3                      0.000                   0.125

         4                   3250.000                   0.000

         5                   8250.000                   0.000

OBJECTIVE COEFFICIENT RANGES

   Variable       Lower Limit       Current Value     Upper Limit

------------   ---------------    --------------- ---------------

      X1                  0.130              0.180   No Upper Limit

      X2         No Lower Limit              0.100            0.110

      X3                  0.100              0.110            0.160

RIGHT HAND SIDE RANGES

Constraint      Lower Limit       Current Value     Upper Limit

------------   ---------------    --------------- ---------------

       1         No Lower Limit            480.000          682.500

       2               1026.667           1200.000         2142.857

       3                840.000           1500.000         1760.000

       4         No Lower Limit            500.000         3750.000

       5              -8250.000              0.000   No Upper Limit

          (15)

If this had been run as an integer program, we would obtain a different solution. (Check/shade if true.)

If we could reduce the fat requirement by 100 lbs., the optimal solution would not change. (Check/shade if true.)

A new customer wants a mix with at least 20% buckwheat. Would this change the optimal solution? If so, would it increase or decrease? Check/shade the following:

Nora in Accounting noted a glitch in her software, and stated that the cost estimates should be changed. She said the cost values should be $0.17 for buckwheat, $0.12 for sunflower, and $0.12 for poppy. Would this be a cause for concern? If so, which component(s) would be affected? Check/shade the following:

We should be concerned.

If you could relax the requirement on one nutritional item, which would be the best choice to achieve the lowest cost? Fill in the blank.

Nutritional Item

Proportional Content

Total Requirement

Buckwheat

Sunflower

Poppy

Fat

0.04

0.06

0.05

480

       Protein

0.12

0.10

0.10

1200

          Roughage

0.10

0.15

0.07

1500

Cost/lb.

$0.18

$0.10

$0.11

Explanation / Answer

If it is a integer program ,

MIN 0.18X1+0.1X2+0.11X3

     S.T.

       1) .04X1+.06X2+.05X3>480

       2) .12X1+.1X2+.1X3>1200

       3) .1X1+.15X2+.07X3<1500

       4) 1X3>500

       5) 1X1-1X2<0

If this is a integer program then the solution

04X1+.06X2+.05X3>380

The answer is changing the new solution

If the customer wants atleast 20% of combination of buckwheat then one more constraint is to be added

0.04x1+0.12x2+0.1x3>=0.2

The new solution will be

No change in asnswer

Objective Function 1237.5 Decision Variable x1 0 x2 8250 x3 3750 Constraints 5137.5 480 > 1200 1200 > 1500 1500 < 3750 500 > -8250 0 < If fat Requirement is reduced by 100 lbs then first constrainst will be

04X1+.06X2+.05X3>380

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote