Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 2: Let a1 aud&-7. Integrate each of the following functious aualytically

ID: 3919958 • Letter: P

Question

Problem 2: Let a1 aud&-7. Integrate each of the following functious aualytically. Then appl the trapezoidal rule, Simpson's 1/ u and Simpson's 3/8 rule onea a) f(z)-7+2 Comment on your results Problem 3: Integrate the functious from parts e) and d) in problen 2 from-1 to b-7 using Romberg integration (two iterations, i.e., k-2). Use step sizes of hi-6 and h2-3. Comment on your bonus points: Integrate the function fro part d)smberg integration with results. 3 iterations. Ilse, h,-1.5. Problem 4: Apply the 2-point Gauss-Legendre formula to integrate each of the functions in prob- lem 2. Comment on your results.

Explanation / Answer

If you post more than 1 question, as per cegg guidelines I have to solve only first question.

Ques 2.

(a)

----------------------------simpson_one_third_integration.m----------------

function [simp_val] = simpson_one_third_integration(y , h)

    % store the sum of odd terms

    sum_odd_terms = 0;

   

    % calculate the sum of odd terms

    for i = 2 : 2 : length(y) - 1

       

        sum_odd_terms = sum_odd_terms + y(i);

       

    end

   

    % store the sum of even terms

    sum_even_terms = 0;

    % calculate the sum of even terms

    for i = 3 : 2 : length(y) - 2

       

        sum_even_terms = sum_even_terms + y(i);

       

    end

   

    simp_val = ( h / 3 ) * ( ( y(1) + y( length(y) ) ) + 4 * sum_odd_terms + 2 * sum_even_terms );

end

----------------------------------------simpson_three_eight_rule.m--------------------------------

function [simp_val] = simpson_three_eight_rule(y , h)

    % store the value of y3 + y6 + ... + y(n-3)

    sum3 = 0;

   

    % calculate the value of y3 + y6 + ... + y(n-3)

    for i = 4 : 3 : length(y) - 3

       

        sum3 = sum3 + y(i);

       

    end

   

    % store the value of y1 + y2 + y3 + ... + y(n-1)

    sum1 = 0;

    % calculate the value of y1 + y2 + y3 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

   

    % store the value of y1 + y2 + y4 + y5 + ... + y(n-1)

    sum2 = sum1 - sum3;

   

    simp_val = ( 3 * h / 8 ) * ( ( y(1) + y( length(y) ) ) + 3 * sum2 + 2 * sum3 );

   

end

---------------------------------trapezoidal_integration.m---------------------------------

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%

% y is the vector of values of function f(x) at points from l_bound to r_bound

% h is the width of the interval

function [trap_val] = trapezoidal_integration( y, h)

    % store the sum y1 + y2 + ... + y(n-1)

    sum1 = 0;

   

    % calculate the sum y1 + y2 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

    % find the value of integration

   trap_val = ( h / 2 ) * ( ( y(1) + y( length(y) ) ) + 2 * sum1 );

end

-------------------main.m-----------------

%                               h

% Simpson 1/3 rd Integration = ---[ ( y0 + yn ) + 4 * ( y1 + y3 + y5 + ... + y(n-1) ) + 2 * ( y2 + y4 + y6 + ... + y(n - 2) ) ) ]

%                               3

%

% Integrate 7x + 2 in [1 , 7] with 9 intervals

%             

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of e^(-x^2)

for i = 1 : length(x)

   

   y(i) = 7 * x(i) + 2;

   

end

% the integration is fom 0 to 6 where width of interval is 1

h = ( r_bound - l_bound ) / n;

simp_val = simpson_one_third_integration( y , h );

fprintf('Simpson 1/3 Integration : %f ', simp_val);

%                               3h

% Simpson 1/3 rd Integration = -----[ ( y0 + yn ) + 3 * ( y1 + y2 + y4 + y5 + ... + y(n-1) ) + 2 * ( y3 + y6 + ... + y(n - 3) ) ) ]

%                                8

%

% Integrate 7x + 2 in [1 , 7] with 9 intervals

%

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of ( sinx - logx + e^x )

for i = 1 : length(x)

   

   y(i) = 7 * x(i) + 2;

   

end

% the integration is fom 0 to 6 where no of interval is n

h = ( r_bound - l_bound ) / n;

simp_val = simpson_three_eight_rule( y , h );

fprintf('Simpson 3/8 Integration : %f ', simp_val);

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%            

% Integrate 7x + 2 in interval [1 , 7]

%            

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 1 / ( 1 + x^2 )

for i = 1 : length(x)

   

   y(i) = 7 * x(i) + 2;

   

end

% the integration is fom l_bound to r_bound where no of interval is n

h = ( r_bound - l_bound ) / n;

trap_val = trapezoidal_integration( y , h );

fprintf('Trapezoidal Integration : %f ', trap_val);

(b)

----------------------------simpson_one_third_integration.m----------------

function [simp_val] = simpson_one_third_integration(y , h)

    % store the sum of odd terms

    sum_odd_terms = 0;

   

    % calculate the sum of odd terms

    for i = 2 : 2 : length(y) - 1

       

        sum_odd_terms = sum_odd_terms + y(i);

       

    end

   

    % store the sum of even terms

    sum_even_terms = 0;

    % calculate the sum of even terms

    for i = 3 : 2 : length(y) - 2

       

        sum_even_terms = sum_even_terms + y(i);

       

    end

   

    simp_val = ( h / 3 ) * ( ( y(1) + y( length(y) ) ) + 4 * sum_odd_terms + 2 * sum_even_terms );

end

----------------------------------------simpson_three_eight_rule.m--------------------------------

function [simp_val] = simpson_three_eight_rule(y , h)

    % store the value of y3 + y6 + ... + y(n-3)

    sum3 = 0;

   

    % calculate the value of y3 + y6 + ... + y(n-3)

    for i = 4 : 3 : length(y) - 3

       

        sum3 = sum3 + y(i);

       

    end

   

    % store the value of y1 + y2 + y3 + ... + y(n-1)

    sum1 = 0;

    % calculate the value of y1 + y2 + y3 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

   

    % store the value of y1 + y2 + y4 + y5 + ... + y(n-1)

    sum2 = sum1 - sum3;

   

    simp_val = ( 3 * h / 8 ) * ( ( y(1) + y( length(y) ) ) + 3 * sum2 + 2 * sum3 );

   

end

---------------------------------trapezoidal_integration.m---------------------------------

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%

% y is the vector of values of function f(x) at points from l_bound to r_bound

% h is the width of the interval

function [trap_val] = trapezoidal_integration( y, h)

    % store the sum y1 + y2 + ... + y(n-1)

    sum1 = 0;

   

    % calculate the sum y1 + y2 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

    % find the value of integration

   trap_val = ( h / 2 ) * ( ( y(1) + y( length(y) ) ) + 2 * sum1 );

end

-----------------------------main.m-------------------------

%                               h

% Simpson 1/3 rd Integration = ---[ ( y0 + yn ) + 4 * ( y1 + y3 + y5 + ... + y(n-1) ) + 2 * ( y2 + y4 + y6 + ... + y(n - 2) ) ) ]

%                               3

%

% Integrate 3x^2 + 6x + 2 in [1 , 7] with 9 intervals

%             

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 3x^2 + 6x + 2

for i = 1 : length(x)

   

   y(i) = 3 * x(i) * x(i) + 6 * x(i) + 2;

   

end

% the integration is fom 0 to 6 where width of interval is 1

h = ( r_bound - l_bound ) / n;

simp_val = simpson_one_third_integration( y , h );

fprintf('Simpson 1/3 Integration : %f ', simp_val);

%                               3h

% Simpson 1/3 rd Integration = -----[ ( y0 + yn ) + 3 * ( y1 + y2 + y4 + y5 + ... + y(n-1) ) + 2 * ( y3 + y6 + ... + y(n - 3) ) ) ]

%                                8

%

% Integrate 7x + 2 in [1 , 7] with 9 intervals

%

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 3x^2 + 6x + 2

for i = 1 : length(x)

   

   y(i) = 3 * x(i) * x(i) + 6 * x(i) + 2;

   

end

% the integration is fom 0 to 6 where no of interval is n

h = ( r_bound - l_bound ) / n;

simp_val = simpson_three_eight_rule( y , h );

fprintf('Simpson 3/8 Integration : %f ', simp_val);

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%            

% Integrate 7x + 2 in interval [1 , 7]

%            

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 3x^2 + 6x + 2

for i = 1 : length(x)

   

   y(i) = 3 * x(i) * x(i) + 6 * x(i) + 2;

   

end

% the integration is fom l_bound to r_bound where no of interval is n

h = ( r_bound - l_bound ) / n;

trap_val = trapezoidal_integration( y , h );

fprintf('Trapezoidal Integration : %f ', trap_val);

Sample Output

Simpson 1/3 Integration : 498.000000
Simpson 3/8 Integration : 518.783203
Trapezoidal Integration : 499.687500

(c)

----------------------------simpson_one_third_integration.m----------------

function [simp_val] = simpson_one_third_integration(y , h)

    % store the sum of odd terms

    sum_odd_terms = 0;

   

    % calculate the sum of odd terms

    for i = 2 : 2 : length(y) - 1

       

        sum_odd_terms = sum_odd_terms + y(i);

       

    end

   

    % store the sum of even terms

    sum_even_terms = 0;

    % calculate the sum of even terms

    for i = 3 : 2 : length(y) - 2

       

        sum_even_terms = sum_even_terms + y(i);

       

    end

   

    simp_val = ( h / 3 ) * ( ( y(1) + y( length(y) ) ) + 4 * sum_odd_terms + 2 * sum_even_terms );

end

----------------------------------------simpson_three_eight_rule.m--------------------------------

function [simp_val] = simpson_three_eight_rule(y , h)

    % store the value of y3 + y6 + ... + y(n-3)

    sum3 = 0;

   

    % calculate the value of y3 + y6 + ... + y(n-3)

    for i = 4 : 3 : length(y) - 3

       

        sum3 = sum3 + y(i);

       

    end

   

    % store the value of y1 + y2 + y3 + ... + y(n-1)

    sum1 = 0;

    % calculate the value of y1 + y2 + y3 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

   

    % store the value of y1 + y2 + y4 + y5 + ... + y(n-1)

    sum2 = sum1 - sum3;

   

    simp_val = ( 3 * h / 8 ) * ( ( y(1) + y( length(y) ) ) + 3 * sum2 + 2 * sum3 );

   

end

---------------------------------trapezoidal_integration.m---------------------------------

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%

% y is the vector of values of function f(x) at points from l_bound to r_bound

% h is the width of the interval

function [trap_val] = trapezoidal_integration( y, h)

    % store the sum y1 + y2 + ... + y(n-1)

    sum1 = 0;

   

    % calculate the sum y1 + y2 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

    % find the value of integration

   trap_val = ( h / 2 ) * ( ( y(1) + y( length(y) ) ) + 2 * sum1 );

end

------------------------------main.m----------------------------

%                               h

% Simpson 1/3 rd Integration = ---[ ( y0 + yn ) + 4 * ( y1 + y3 + y5 + ... + y(n-1) ) + 2 * ( y2 + y4 + y6 + ... + y(n - 2) ) ) ]

%                               3

%

% Integrate5x^3 + 2x^2 + x + 7 in [1 , 7] with 9 intervals

%              

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 5x^3 + 2x^2 + x + 7

for i = 1 : length(x)

   

   y(i) = 5 * x(i) * x(i) * x(i) + 2 * x(i) * x(i) + x(i) + 7;

   

end

% the integration is fom 0 to 6 where width of interval is 1

h = ( r_bound - l_bound ) / n;

simp_val = simpson_one_third_integration( y , h );

fprintf('Simpson 1/3 Integration : %f ', simp_val);

%                               3h

% Simpson 1/3 rd Integration = -----[ ( y0 + yn ) + 3 * ( y1 + y2 + y4 + y5 + ... + y(n-1) ) + 2 * ( y3 + y6 + ... + y(n - 3) ) ) ]

%                                8

%

% Integrate 5x^3 + 2x^2 + x + 7 in [1 , 7] with 9 intervals

%

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 5x^3 + 2x^2 + x + 7

for i = 1 : length(x)

   

   y(i) = 5 * x(i) * x(i) * x(i) + 2 * x(i) * x(i) + x(i) + 7;

   

end

% the integration is fom 0 to 6 where no of interval is n

h = ( r_bound - l_bound ) / n;

simp_val = simpson_three_eight_rule( y , h );

fprintf('Simpson 3/8 Integration : %f ', simp_val);

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%            

% Integrate 5x^3 + 2x^2 + x + 7 in interval [1 , 7]

%            

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of 5x^3 + 2x^2 + x + 7

for i = 1 : length(x)

   

   y(i) = 5 * x(i) * x(i) * x(i) + 2 * x(i) * x(i) + x(i) + 7;

   

end

% the integration is fom l_bound to r_bound where no of interval is n

h = ( r_bound - l_bound ) / n;

trap_val = trapezoidal_integration( y , h );

fprintf('Trapezoidal Integration : %f ', trap_val);

Sample Output

Simpson 1/3 Integration : 3294.000000
Simpson 3/8 Integration : 3428.854980
Trapezoidal Integration : 3328.875000

(d)

----------------------------simpson_one_third_integration.m----------------

function [simp_val] = simpson_one_third_integration(y , h)

    % store the sum of odd terms

    sum_odd_terms = 0;

   

    % calculate the sum of odd terms

    for i = 2 : 2 : length(y) - 1

       

        sum_odd_terms = sum_odd_terms + y(i);

       

    end

   

    % store the sum of even terms

    sum_even_terms = 0;

    % calculate the sum of even terms

    for i = 3 : 2 : length(y) - 2

       

        sum_even_terms = sum_even_terms + y(i);

       

    end

   

    simp_val = ( h / 3 ) * ( ( y(1) + y( length(y) ) ) + 4 * sum_odd_terms + 2 * sum_even_terms );

end

----------------------------------------simpson_three_eight_rule.m--------------------------------

function [simp_val] = simpson_three_eight_rule(y , h)

    % store the value of y3 + y6 + ... + y(n-3)

    sum3 = 0;

   

    % calculate the value of y3 + y6 + ... + y(n-3)

    for i = 4 : 3 : length(y) - 3

       

        sum3 = sum3 + y(i);

       

    end

   

    % store the value of y1 + y2 + y3 + ... + y(n-1)

    sum1 = 0;

    % calculate the value of y1 + y2 + y3 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

   

    % store the value of y1 + y2 + y4 + y5 + ... + y(n-1)

    sum2 = sum1 - sum3;

   

    simp_val = ( 3 * h / 8 ) * ( ( y(1) + y( length(y) ) ) + 3 * sum2 + 2 * sum3 );

   

end

---------------------------------trapezoidal_integration.m---------------------------------

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%

% y is the vector of values of function f(x) at points from l_bound to r_bound

% h is the width of the interval

function [trap_val] = trapezoidal_integration( y, h)

    % store the sum y1 + y2 + ... + y(n-1)

    sum1 = 0;

   

    % calculate the sum y1 + y2 + ... + y(n-1)

    for i = 2 : length(y) - 1

       

        sum1 = sum1 + y(i);

       

    end

    % find the value of integration

   trap_val = ( h / 2 ) * ( ( y(1) + y( length(y) ) ) + 2 * sum1 );

end

-------------------------------main.m--------------------------------

%                               h

% Simpson 1/3 rd Integration = ---[ ( y0 + yn ) + 4 * ( y1 + y3 + y5 + ... + y(n-1) ) + 2 * ( y2 + y4 + y6 + ... + y(n - 2) ) ) ]

%                               3

%

% Integrate x^4 + 7x^3 + x^2 + 4x + 8 in [1 , 7] with 9 intervals

%             

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of x^4 + 7x^3 + x^2 + 4x + 8

for i = 1 : length(x)

   

   y(i) = x(i) * x(i) * x(i) * x(i) + 7 * x(i) * x(i) * x(i) + x(i) * x(i) + 4 * x(i) + 8;

   

end

% the integration is fom 0 to 6 where width of interval is 1

h = ( r_bound - l_bound ) / n;

simp_val = simpson_one_third_integration( y , h );

fprintf('Simpson 1/3 Integration : %f ', simp_val);

%                               3h

% Simpson 1/3 rd Integration = -----[ ( y0 + yn ) + 3 * ( y1 + y2 + y4 + y5 + ... + y(n-1) ) + 2 * ( y3 + y6 + ... + y(n - 3) ) ) ]

%                                8

%

% Integrate x^4 + 7x^3 + x^2 + 4x + 8 in [1 , 7] with 9 intervals

%

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of x^4 + 7x^3 + x^2 + 4x + 8

for i = 1 : length(x)

   

   y(i) = x(i) * x(i) * x(i) * x(i) + 7 * x(i) * x(i) * x(i) + x(i) * x(i) + 4 * x(i) + 8;

   

end

% the integration is fom 0 to 6 where no of interval is n

h = ( r_bound - l_bound ) / n;

simp_val = simpson_three_eight_rule( y , h );

fprintf('Simpson 3/8 Integration : %f ', simp_val);

%                            h

% Trapezoidal Integration = ---[ ( y0 + yn ) + 2 * ( y1 + y2 + ... + y(n-1) ) ]

%                            2

%            

% Integrate x^4 + 7x^3 + x^2 + 4x + 8 in interval [1 , 7]

%            

l_bound = 1;

r_bound = 7;

% store the number of intervals

n = 8;

% create a vector for x in [1 , 7] with 9 intervals

x = linspace( l_bound , r_bound , n + 1 );

% create a vector of size 1 x length(x) initilized to 0

y = zeros(1 , length(x));

% create a vector of values of x^4 + 7x^3 + x^2 + 4x + 8

for i = 1 : length(x)

   

   y(i) = x(i) * x(i) * x(i) * x(i) + 7 * x(i) * x(i) * x(i) + x(i) * x(i) + 4 * x(i) + 8;

   

end

% the integration is fom l_bound to r_bound where no of interval is n

h = ( r_bound - l_bound ) / n;

trap_val = trapezoidal_integration( y , h );

fprintf('Trapezoidal Integration : %f ', trap_val);

Sample Output

Simpson 1/3 Integration : 7819.453125
Simpson 3/8 Integration : 8124.432495
Trapezoidal Integration : 7931.074219

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote