Note: Show all the steps. No grade for final answers. Problem 1: Count from 0 to
ID: 3890721 • Letter: N
Question
Note: Show all the steps. No grade for final answers. Problem 1: Count from 0 to (15)0 using base-5 numbers. (2 points) Problem 2 Convert 10011100 from binary to hexadecimal. (2 points) (6 points) (2 points) (2 points) (2 points) Problem 3: Convert the following to decimal 1. (B3216 2. (110110101)2 3. (1001 0011 0101 0111 0110) BCD Problem 4: 1. (84)1o 2. (BAD)16 3. (312)10 (6 points) (2 points) (2 points) (2 points) Convert the following to binary: (6 points) (2 points) (2 points) (2 points) Problem 5: Convert the following to Hexadecimal: 1. (100 1011)2 2. (1001 0111 0001 0100)2 3. (1019)1oExplanation / Answer
Problem 1:
Problem 2:
Binary 10011100 to hexadecimal
make bits in binary into groups of 4
1001 and 1100
1001 = 9 in hexadecimal
1100 = C in Hexadecimal
(10011100)2 = (9C)16
Problem 3
Convert to decimal
1. (B32)16 = (B*162 + 3*161 + 2*160 ) = 2816 + 48 +2 = (2866)10
2. (110110101)2 = 28 + 27 + 25 + 24 + 22 + 20 = 256 +128 + 32+16+4+1 = (437)10
3. (1001 0011 0101 0111 0110) in BCD
1001 = 9
0011 = 3
0101 = 5
0111 = 7
0110 = 6
(1001 0011 0101 0111 0110) in BCD = (93576)10
Problem 4:
1. 84
remainder
2|84
2|42 0
2|21 0
2|10 1
2|5 0
2|2 1
2|1 0
2|0 1
= (1010100)2
2. (BAD)16 = (1011 1010 1101)2
B = 1011
A = 1010
D = 1101
3. (312)10
remainder
2|312
2|156 0
2|78 0
2|39 0
2|19 1
2|9 1
2|4 1
2|2 0
2|1 0
2|0 1
= (100111000)2
Problem 5
1. (100 1011)2 = (4B)16
2. (1001 0111 0001 0100)2 = (9714)16
3. (1019)10
remainder
16|1019
16|63 B(11)
16|3 F(15)
16|0 3
= (3FB)16
Decimal Number (base 10) Base 5 Number 0 0 1 1 2 2 3 3 4 4 5 10 (1*51 + 0*50 ) 6 11 (1*51 + 1*50 ) 7 12 (1*51 + 2*50 ) 8 13 (1*51 + 3*50 ) 9 14 (1*51 + 4*50 ) 10 20 (2*51+ 0*50 ) 11 21 (2*51+ 1*50 ) 12 22 (2*51+ 2*50 ) 13 23 (2*51+ 3*50 ) 14 24 (2*51+ 4*50 ) 15 30 (3*51+ 5*50 )Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.