Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Solve the Sudoku game using the inputs available online. You can create your own

ID: 3817848 • Letter: S

Question

Solve the Sudoku game using the inputs available online. You can create your own input file as long is it is in the same format as the sample files given. Lookup online the rules for Sudoku if you are uncertain.

You will be required to use concepts we have gone over in the class. Do not use techniques we have not discussed!

Items that are required:

Read in game board from a .txt file.

Write out solution to game board in same format as the input file (.txt file on system)

You MUST use Classes and functions in your program.

The main function will be responsible for reading in the file, calling the solve function and writing the solution back to the system.

Your program must be well documented to get full credit.

Your program must create a workable solution (sometimes may be more than one) to get full credit, you only need to find one of the solutions, not all.

Bonus Items. You will get additional points if you use the following:

Linked-Lists

Class Inheritance

Function overloading

Explanation / Answer

Since you have not said about the programming language to be used, the below code is been
written in C++.

CODE:

sudoku.cpp

#include <stdio.h>

// UNASSIGNED is used for empty cells in sudoku grid
#define UNASSIGNED 0

// N is used for size of Sudoku grid. Size will be NxN
#define N 9

// Checks whether it will be legal to assign num to the given row,col
bool isSafe(int grid[N][N], int row, int col, int num);

// This function finds an entry in grid that is still unassigned
bool FindUnassignedLocation(int grid[N][N], int &row, int &col);

/* Takes a partially filled-in grid and attempts to assign values to
all unassigned locations in such a way to meet the requirements
for Sudoku solution (non-duplication across rows, columns, and boxes) */
bool sudokuSolve(int grid[N][N])
{
int row, col;

// If there is no unassigned location, we are done
if (!FindUnassignedLocation(grid, row, col))
return true; // success!

// consider digits 1 to 9
for (int num = 1; num <= 9; num++)
{
// if looks promising
if (isSafe(grid, row, col, num))
{
// make tentative assignment
grid[row][col] = num;

// return, if success, yay!
if (sudokuSolve(grid))
return true;

// failure, unmake & try again
grid[row][col] = UNASSIGNED;
}
}
return false; // this triggers backtracking
}

/* Searches the grid to find an entry that is still unassigned. If
found, the reference parameters row, col will be set the location
that is unassigned, and true is returned. If no unassigned entries
remain, false is returned. */
bool FindUnassignedLocation(int grid[N][N], int &row, int &col)
{
for (row = 0; row < N; row++)
for (col = 0; col < N; col++)
if (grid[row][col] == UNASSIGNED)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
in the specified row matches the given number. */
bool UsedInRow(int grid[N][N], int row, int num)
{
for (int col = 0; col < N; col++)
if (grid[row][col] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
in the specified column matches the given number. */
bool UsedInCol(int grid[N][N], int col, int num)
{
for (int row = 0; row < N; row++)
if (grid[row][col] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether any assigned entry
within the specified 3x3 box matches the given number. */
bool UsedInBox(int grid[N][N], int boxStartRow, int boxStartCol, int num)
{
for (int row = 0; row < 3; row++)
for (int col = 0; col < 3; col++)
if (grid[row+boxStartRow][col+boxStartCol] == num)
return true;
return false;
}

/* Returns a boolean which indicates whether it will be legal to assign
num to the given row,col location. */
bool isSafe(int grid[N][N], int row, int col, int num)
{
/* Check if 'num' is not already placed in current row,
current column and current 3x3 box */
return !UsedInRow(grid, row, num) &&
!UsedInCol(grid, col, num) &&
!UsedInBox(grid, row - row%3 , col - col%3, num);
}

/* To print grid */
void printGrid(int grid[N][N])
{
for (int row = 0; row < N; row++)
{
for (int col = 0; col < N; col++)
printf("%2d", grid[row][col]);
printf(" ");
}
}

/* Driver Program to test above functions */
int main()
{
// 0 means unassigned cells
int grid[N][N] = {{3, 0, 6, 5, 0, 8, 4, 0, 0},
{5, 2, 0, 0, 0, 0, 0, 0, 0},
{0, 8, 7, 0, 0, 0, 0, 3, 1},
{0, 0, 3, 0, 1, 0, 0, 8, 0},
{9, 0, 0, 8, 6, 3, 0, 0, 5},
{0, 5, 0, 0, 9, 0, 6, 0, 0},
{1, 3, 0, 0, 0, 0, 2, 5, 0},
{0, 0, 0, 0, 0, 0, 0, 7, 4},
{0, 0, 5, 2, 0, 6, 3, 0, 0}};
if (sudokuSolve(grid) == true)
printGrid(grid);
else
printf("No solution exists");

return 0;
}

OUTPUT:
$g++ sudoku.cpp
$./a.out

3 1 6 5 7 8 4 9 2
5 2 9 1 3 4 7 6 8
4 8 7 6 2 9 5 3 1
2 6 3 4 1 5 9 8 7
9 7 4 8 6 3 1 2 5
8 5 1 7 9 2 6 4 3
1 3 8 9 4 7 2 5 6
6 9 2 3 5 1 8 7 4
7 4 5 2 8 6 3 1 9

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote