Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

(20 points) Consider the following undirected weighted graph. 34 36 24 35 25 39

ID: 3811335 • Letter: #

Question

(20 points) Consider the following undirected weighted graph. 34 36 24 35 25 39 19 23 12 21 33 30 (a) Give the list of edges in the minimum spanning tree in the order that Kruskal's algorithm inserts them. Please implement the Kruskal's algorithm. Include screenshots of the program running and submit your java code in a separate file. (b) Give the list of edges in the minimum spanning tree in the order that Prim's algorithm inserts them, assuming that it starts at vertex F. Please implement the Prim's algorithm. Include screenshots of the program running and submit your java code in a separate file.

Explanation / Answer

//kruskal implementation

// Java program for Kruskal's algorithm to find Minimum Spanning Tree
// of a given connected, undirected and weighted graph
import java.util.*;
import java.lang.*;
import java.io.*;

class Graph
{
    // A class to represent a graph edge
    class Edge implements Comparable<Edge>
    {
        int src, dest, weight;

        // Comparator function used for sorting edges based on
        // their weight
        public int compareTo(Edge compareEdge)
        {
            return this.weight-compareEdge.weight;
        }
    };

    // A class to represent a subset for union-find
    class subset
    {
        int parent, rank;
    };

    int V, E;    // V-> no. of vertices & E->no.of edges
    Edge edge[]; // collection of all edges

    // Creates a graph with V vertices and E edges
    Graph(int v, int e)
    {
        V = v;
        E = e;
        edge = new Edge[E];
        for (int i=0; i<e; ++i)
            edge[i] = new Edge();
    }

    // A utility function to find set of an element i
    // (uses path compression technique)
    int find(subset subsets[], int i)
    {
        // find root and make root as parent of i (path compression)
        if (subsets[i].parent != i)
            subsets[i].parent = find(subsets, subsets[i].parent);

        return subsets[i].parent;
    }

    // A function that does union of two sets of x and y
    // (uses union by rank)
    void Union(subset subsets[], int x, int y)
    {
        int xroot = find(subsets, x);
        int yroot = find(subsets, y);

        // Attach smaller rank tree under root of high rank tree
        // (Union by Rank)
        if (subsets[xroot].rank < subsets[yroot].rank)
            subsets[xroot].parent = yroot;
        else if (subsets[xroot].rank > subsets[yroot].rank)
            subsets[yroot].parent = xroot;

        // If ranks are same, then make one as root and increment
        // its rank by one
        else
        {
            subsets[yroot].parent = xroot;
            subsets[xroot].rank++;
        }
    }

    // The main function to construct MST using Kruskal's algorithm
    void KruskalMST()
    {
        Edge result[] = new Edge[V]; // Tnis will store the resultant MST
        int e = 0; // An index variable, used for result[]
        int i = 0; // An index variable, used for sorted edges
        for (i=0; i<V; ++i)
            result[i] = new Edge();

        // Step 1: Sort all the edges in non-decreasing order of their
        // weight. If we are not allowed to change the given graph, we
        // can create a copy of array of edges
        Arrays.sort(edge);

        // Allocate memory for creating V ssubsets
        subset subsets[] = new subset[V];
        for(i=0; i<V; ++i)
            subsets[i]=new subset();

        // Create V subsets with single elements
        for (int v = 0; v < V; ++v)
        {
            subsets[v].parent = v;
            subsets[v].rank = 0;
        }

        i = 0; // Index used to pick next edge

        // Number of edges to be taken is equal to V-1
        while (e < V - 1)
        {
            // Step 2: Pick the smallest edge. And increment the index
            // for next iteration
            Edge next_edge = new Edge();
            next_edge = edge[i++];

            int x = find(subsets, next_edge.src);
            int y = find(subsets, next_edge.dest);

            // If including this edge does't cause cycle, include it
            // in result and increment the index of result for next edge
            if (x != y)
            {
                result[e++] = next_edge;
                Union(subsets, x, y);
            }
            // Else discard the next_edge
        }

        // print the contents of result[] to display the built MST
        System.out.println("Following IS the order of the edges that are constructed MST");
        for (i = 0; i < e; ++i)
            System.out.println(result[i].src+" -- "+result[i].dest+" == "+
                               result[i].weight);
    }

    // Driver Program
    public static void main (String[] args)
    {

      
        int V = 9; // Number of vertices in graph
        int E = 18; // Number of edges in graph
        Graph graph = new Graph(V, E);
        //here in this graph
        //A - 0
        //B - 1
        //C - 2
        //D - 3
        //E - 4
        //F - 5
        //G - 6
        //H - 7
        //I - 8

        // add edge
        graph.edge[0].src = 0;//A
        graph.edge[0].dest = 1;//B
        graph.edge[0].weight = 22;

        // add edge
        graph.edge[1].src = 0;//A
        graph.edge[1].dest = 2;//C
        graph.edge[1].weight = 9;//

     
        graph.edge[2].src = 0;//A
        graph.edge[2].dest = 3;//D
        graph.edge[2].weight = 12;

      
        graph.edge[3].src = 1;//B
        graph.edge[3].dest = 2;//C
        graph.edge[3].weight = 35;

      
        graph.edge[4].src = 2;//C
        graph.edge[4].dest = 3;//D
        graph.edge[4].weight = 4;
      
        graph.edge[5].src = 1;//B
        graph.edge[5].dest = 7;//F
        graph.edge[5].weight = 36;
      
        graph.edge[6].src = 1 ;//B
        graph.edge[6].dest = 7;//H
        graph.edge[6].weight = 34;
      
         graph.edge[7].src = 2;//C
        graph.edge[7].dest = 5;//F
        graph.edge[7].weight = 42;
      
        graph.edge[8].src = 2;//C
        graph.edge[8].dest = 4;//E
        graph.edge[8].weight = 65;
      
         graph.edge[9].src = 3;//D
        graph.edge[9].dest = 4;//E
        graph.edge[9].weight = 33;
      
         graph.edge[10].src = 3;//D
        graph.edge[10].dest = 8;//I
        graph.edge[10].weight = 30;
      
         graph.edge[11].src = 4;//E
        graph.edge[11].dest = 6;//G
        graph.edge[11].weight = 23;
      
         graph.edge[12].src = 5;//F
        graph.edge[12].dest = 6;//G
        graph.edge[12].weight = 39;
      
         graph.edge[13].src = 5;//F
        graph.edge[13].dest = 4;//E
        graph.edge[13].weight = 18;
      
        graph.edge[14].src = 5;//F
        graph.edge[14].dest = 7;//H
        graph.edge[14].weight = 24;
      
        graph.edge[15].src = 6;//G
        graph.edge[15].dest = 7;//H
        graph.edge[15].weight = 25;
      
         graph.edge[16].src = 6;//G
        graph.edge[16].dest = 8;//I
        graph.edge[16].weight = 21 ;
      
         graph.edge[17].src = 7;//H
        graph.edge[17].dest = 8;//I
        graph.edge[17].weight =19 ;
      

        graph.KruskalMST();
    }
}

output:-

run:
Following IS the order of the edges that are constructed MST
2 -- 3 == 4
0 -- 2 == 9
5 -- 4 == 18
7 -- 8 == 19
6 -- 8 == 21
0 -- 1 == 22
4 -- 6 == 23
3 -- 8 == 30

//prims...

import java.util.*;
import java.lang.*;
import java.io.*;

class MST
{
    // Number of vertices in the graph
    private static final int V=9;

    // A utility function to find the vertex with minimum key
    // value, from the set of vertices not yet included in MST
    int minKey(int key[], Boolean mstSet[])
    {
        // Initialize min value
        int min = Integer.MAX_VALUE, min_index=-1;

        for (int v = 0; v < V; v++)
            if (mstSet[v] == false && key[v] < min)
            {
                min = key[v];
                min_index = v;
            }

        return min_index;
    }

    // A utility function to print the constructed MST stored in
    // parent[]
    void printMST(int parent[], int n, int graph[][])
    {
        System.out.println("Edge   Weight");
        for (int i = 1; i < V; i++)
            System.out.println(parent[i]+" - "+ i+"    "+
                               graph[i][parent[i]]);
    }

    // Function to construct and print MST for a graph represented
    // using adjacency matrix representation
    void primMST(int graph[][])
    {
        // Array to store constructed MST
        int parent[] = new int[V];

        // Key values used to pick minimum weight edge in cut
        int key[] = new int [V];

        // To represent set of vertices not yet included in MST
        Boolean mstSet[] = new Boolean[V];

        // Initialize all keys as INFINITE
        for (int i = 0; i < V; i++)
        {
            key[i] = Integer.MAX_VALUE;
            mstSet[i] = false;
        }

        // Always include first 1st vertex in MST.
        key[0] = 0;     // Make key 0 so that this vertex is
                        // picked as first vertex
        parent[0] = -1; // First node is always root of MST

        // The MST will have V vertices
        for (int count = 0; count < V-1; count++)
        {
            // Pick thd minimum key vertex from the set of vertices
            // not yet included in MST
            int u = minKey(key, mstSet);

            // Add the picked vertex to the MST Set
            mstSet[u] = true;

            // Update key value and parent index of the adjacent
            // vertices of the picked vertex. Consider only those
            // vertices which are not yet included in MST
            for (int v = 0; v < V; v++)
            {
                // graph[u][v] is non zero only for adjacent vertices of m
                // mstSet[v] is false for vertices not yet included in MST
                // Update the key only if graph[u][v] is smaller than key[v]
                //System.out.println(u+" "+v);
                if (graph[u][v]!=0 && mstSet[v] == false &&
                    graph[u][v] < key[v])
                {
                    parent[v] = u;
                    key[v] = graph[u][v];
                }
            }
        }

        // print the constructed MST
        printMST(parent, V, graph);
    }

    public static void main (String[] args)
    {
      
        //given graph...
        MST t = new MST();
         //here in this graph
        //A - 4
        //B - 5
        //C - 6
        //D - 7
        //E - 8
        //F - 0
        //G - 1
        //H - 2
        //I - 3
        //vertices : 9
        //edges : 18
        System.out.println("Mst final output:");
        int graph[][] = new int[][] {{0,39,24,0,0,36,42,0,18},
                                     {39,0,25,21,0,0,0,0,23},
                                     {24,25,0,19,0,34,0,0,0},
                                     {0,21,19,0,0,0,0,30,0},
                                     {0,0,0,0,0,22,9,12,0},
                                     {36,0,34,0,22,0,35,0,0},
                                     {42,0,0,0,9,35,0,4,65},
                                     {0,0,0,30,12,0,4,0,33},
                                     {18,23,0,0,0,0,65,33,0}
                                    };

        // Print the solution
        t.primMST(graph);
    }
}

output:-

run:
Mst final output:
Edge   Weight
8 - 1    23
3 - 2    19
1 - 3    21
6 - 4    9
4 - 5    22
7 - 6    4
3 - 7    30
0 - 8    18
BUILD SUCCESSFUL (total time: 0 seconds)