A. Design a C# program to generate 1000 random numbers ranging 1 to 200 and coun
ID: 3803415 • Letter: A
Question
A. Design a C# program to generate 1000 random numbers ranging 1 to 200 and count how many numbers are (1) even numbers (2) odd numbers (3) divisible by 5. Hint: Single loop. 3 counters. In the loop, get a random number, test the number for the 3 situations. When the loop ended, display the result.
B. Design a C# program to display all primary numbers between 1 and 500 and count how many are they. A primary number is a number not divisible by any number other than 1 and itself. Hint: double loop. The outer loop starts from 1 to 500. The inner loop starts from 2 to n-1 or n/2 +1. In the inner loop , as soon as the outer loop counter is divisible by the inner loop counter, this outer loop number is not a prime number, so break out of the inner loop and continue to test the next outer loop number.
Explanation / Answer
A
using System;
public class Test
{
public static void Main()
{
int num,countEven,countOdd,count;
count = countEven = countOdd = 0;
for(int i=0;i<1000;i++)
{
Random rnd = new Random(); //Random object
num = rnd.Next(1, 201); // generate random number in the range 1 to 200
Console.Write(num+" ");
if(num % 5 == 0)
count++;
if(num % 2 == 0)
countEven++;
else
countOdd++;
}
Console.WriteLine(" Count of even numbers : "+countEven);
Console.WriteLine(" Count of odd numbers : "+countOdd);
Console.WriteLine(" Count of numbers divisible by 5 : "+count);
}
}
Output:
166 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 127 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 118 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 109 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 195 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 186 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 82 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 177 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 73 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 168 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 141 141
Count of even numbers : 547
Count of odd numbers : 453
Count of numbers divisible by 5 : 258
B
using System;
public class Test
{
public static void Main()
{
int count = 0;
int isPrime;
for(int i = 1; i <= 500; i++)
{
isPrime = 1;
for(int j = 2; j <= i/2 + 1; j++)
{
if(i % j == 0) // divide i by all j
{
isPrime = 0; // if i divisible by any j it is not primary number
break;
}
}
if(isPrime==1) // if isPrime = 1 it is primary number
{
count++;
Console.Write(i+" ");
}
}
Console.WriteLine(" Count of primary numbers : "+count);
}
}
Output:
1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499
Count of primary numbers : 95
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.