This is the code that was in the link // SLinkedList.h // Code from: // Data Str
ID: 3725010 • Letter: T
Question
This is the code that was in the link
// SLinkedList.h
// Code from:
// Data Structures and Algorithms in C++, Goodrich, Tamassia, and Mount, 2nd Ed., 2011.
//
// #pragma once
#include <stdexcept>
#include <iostream>
using namespace std;
template <typename E>
class SLinkedList; // forward declaration to be used when declaring SNode
template <typename E>
class SNode
{ // singly linked list node
private:
E elem; // linked list element value
SNode<E> *next; // next item in the list
friend class SLinkedList<E>; // provide SLinkedList access
};
template <typename E>
class SLinkedList
{ // a singly linked list
public:
SLinkedList(); // empty list constructor
~SLinkedList(); // destructor
bool empty() const; // is list empty?
E &front(); // return front element
void addFront(const E &e); // add to front of list
void addBack(const E &e); // add to end of list
void removeFront(); // remove front item list
int size() const; // list size
void reverse();
private:
SNode<E> *head; // head of the list
int n; // number of items
};
template <typename E>
SLinkedList<E>::SLinkedList() // constructor
: head(NULL), n(0)
{
}
template <typename E>
bool SLinkedList<E>::empty() const // is list empty?
{
return head == NULL; // can also use return (n == 0);
}
template <typename E>
E &SLinkedList<E>::front() // return front element
{
if (empty())
throw length_error("empty list");
return head->elem;
}
template <typename E>
SLinkedList<E>::~SLinkedList() // destructor
{
while (!empty())
removeFront();
}
template <typename E>
void SLinkedList<E>::addFront(const E &e)
{ // add to front of list
SNode<E> *v = new SNode<E>; // create new node
v->elem = e; // store data
v->next = head; // head now follows v
head = v; // v is now the head
n++;
}
template <typename E>
void SLinkedList<E>::addBack(const E &e)
{ // add to front of list
SNode<E> *v = new SNode<E>; // create new node
v->elem = e; // store data
v->next = NULL; // head now follows v
if (head == NULL)
{
head = v;
}
else
{
SNode<E> *old = head; // save current head
while (old->next != NULL)
{
old = old->next;
}
old->next = v;
}
n++;
}
template <typename E>
void SLinkedList<E>::removeFront()
{ // remove front item
if (empty())
throw length_error("empty list");
SNode<E> *old = head; // save current head
head = old->next; // skip over old head
delete old; // delete the old head
n--;
}
template <typename E>
int SLinkedList<E>::size() const
{ // list size
return n;
}
template<typename E>
void SLinkedList<E>::reverse()
{
}
//SLinkedList.cpp
#include <stdexcept>
#include <iostream>
#include <cstring>
#include <string>
#include "SLinkedList.h"
using namespace std;
int main()
{
SLinkedList<char>s;
string inp;
cout << "Enter input: ";
getline(cin, inp);
for (int i=0; i<inp.length(); i++)
{
s.addBack(inp[i]);
}
s.reverse();
system("pause");
}
Explanation / Answer
I have implemented the reverse() method, have a look
// SLinkedList.h
// Code from:
// Data Structures and Algorithms in C++, Goodrich, Tamassia, and Mount, 2nd Ed., 2011.
//
// #pragma once
#include <stdexcept>
#include <iostream>
using namespace std;
template <typename E>
class SLinkedList; // forward declaration to be used when declaring SNode
template <typename E>
class SNode
{ // singly linked list node
private:
E elem; // linked list element value
SNode<E> *next; // next item in the list
friend class SLinkedList<E>; // provide SLinkedList access
};
template <typename E>
class SLinkedList
{ // a singly linked list
public:
SLinkedList(); // empty list constructor
~SLinkedList(); // destructor
bool empty() const; // is list empty?
E &front(); // return front element
void addFront(const E &e); // add to front of list
void addBack(const E &e); // add to end of list
void removeFront(); // remove front item list
int size() const; // list size
void reverse();
private:
SNode<E> *head; // head of the list
int n; // number of items
};
template <typename E>
SLinkedList<E>::SLinkedList() // constructor
: head(NULL), n(0)
{
}
template <typename E>
bool SLinkedList<E>::empty() const // is list empty?
{
return head == NULL; // can also use return (n == 0);
}
template <typename E>
E &SLinkedList<E>::front() // return front element
{
if (empty())
throw length_error("empty list");
return head->elem;
}
template <typename E>
SLinkedList<E>::~SLinkedList() // destructor
{
while (!empty())
removeFront();
}
template <typename E>
void SLinkedList<E>::addFront(const E &e)
{ // add to front of list
SNode<E> *v = new SNode<E>; // create new node
v->elem = e; // store data
v->next = head; // head now follows v
head = v; // v is now the head
n++;
}
template <typename E>
void SLinkedList<E>::addBack(const E &e)
{ // add to front of list
SNode<E> *v = new SNode<E>; // create new node
v->elem = e; // store data
v->next = NULL; // head now follows v
if (head == NULL)
{
head = v;
}
else
{
SNode<E> *old = head; // save current head
while (old->next != NULL)
{
old = old->next;
}
old->next = v;
}
n++;
}
template <typename E>
void SLinkedList<E>::removeFront()
{ // remove front item
if (empty())
throw length_error("empty list");
SNode<E> *old = head; // save current head
head = old->next; // skip over old head
delete old; // delete the old head
n--;
}
template <typename E>
int SLinkedList<E>::size() const
{ // list size
return n;
}
template<typename E>
void SLinkedList<E>::reverse()
{
SNode<E> *prev = NULL;
SNode<E> *current = head;
SNode<E> *next;
while (current != NULL)
{
next = current->next;
current->next = prev;
prev = current;
current = next;
}
head = prev;
}
//SLinkedList.cpp
#include <stdexcept>
#include <iostream>
#include <cstring>
#include <string>
#include "SLinkedList.h"
using namespace std;
int main()
{
SLinkedList<char>s;
string inp;
cout << "Enter input: ";
getline(cin, inp);
for (int i=0; i<inp.length(); i++)
{
s.addBack(inp[i]);
}
s.reverse();
system("pause");
}
Thanks, let me know if there is any concern.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.