Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

. RSA public key encryption system. Suppose p = 5 and q = 11 are our “large” pri

ID: 3715325 • Letter: #

Question

. RSA public key encryption system.   Suppose p = 5 and q = 11 are our “large” primes.  

         a. compute the n needed in the RSA algorithm.           

b. Explain or show why e = 7 is an acceptable encoding value.

c. Compute the ciphertext for the plaintext character string ENCRYPTION where E = 5, N = 14, , C = 3, R = 18, etc..

Symbol

Numeric(m)

P^7

Cipher- (P^7)mod(55)

E

5

N

14

C

3

R

18

Y

5

P

16

T

20

I

10

O

15

N

14

d. Find a decryption key (there is one less than 30) and show/explain how you found it. Decrypt the values obtained in c. above. See slides.

Symbol

Numeric(m)

P^7

Cipher- (P^7)mod(55)

E

5

N

14

C

3

R

18

Y

5

P

16

T

20

I

10

O

15

N

14

Explanation / Answer

By RSA algorithm

1. n=p*q=5*11=55

2. e value is a)Must be an integer.

b) Not be a factor of n.

c ) 1 < e < ?(n)

?(n) = (P-1)(Q-1) =4*10=40

from above conditions, e=7 is an acceptable value

3.

Symbol Numeric(m) P^7 Cipher- (P^7)mod(55)

E 5 78125 25

N 14 105413504 9

C 3 2187 42

R 18 612220032 17

Y 5 78125 25

P 16 268435456 36

T 20 1280000000 15

I 10 10000000 10

O 15 170859375 5

N 14 105413504 9

4 .Now calculate decryption Key, d :

d = (k*?(n) + 1) / e for some integer k

d=(2*40+1)/7=23

For k = 4, value of d is 23.

Decrypted Data = encrypted data pow d mod n.

= ENCRYPTION