Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Table 2 Normaily Distributed Random Numbers iDie ar ge 5 67 89 1 10 11.46 0.09 -

ID: 371125 • Letter: T

Question

Table 2 Normaily Distributed Random Numbers iDie ar ge 5 67 89 1 10 11.46 0.09 -0.59 0.19 -0.52 -1.82 0.53 -1.12 1.36 -0.44 2-1.05 0.56 -0.67 -0.16 1.39 -1.21 0.45 -0.63 -0.92 0.27 3 0.15 -0.02 0.41 -0.09 -0.61 -0.18 -0.63 -1.20 0.28 -0.50 0.81 1.87 0.51 033 -0.32 1.19 2.18 -2.07 1.10 0.70 5 0.74 -0.44 1.53 -1.76 0.01 047 0.07 0.22 -0.58 -1.03 6 -0.39 0.35 -0.37 -0.52 -1.14 0.27 -1.78 0.43 1.15 -0.31 0.45 0.23 0.26 -0.31 -0.19 -0.03 -0.92 0.18 -0.09 0.16 8 2.40 038 -0.15 -1.04 -0.76 1.12 -0.37 -0.71 -1.11 0.25 9 0.59 -0.70 -0.04 0.12 1.60 0.34 -0.05 -0.26 0.41 0.80 10-0.06 083 -1.60 -0.28 028 -0.15 0,73 -013-075 -1.49 2 3 4

Explanation / Answer

The random numbers represent critical values (z)

Simulation of operating time of operation 1 = m + z*s = 120 + 0.19*10 = 121.9 minutes

Simulation of operating time of operation 2 = m + z*s = 120 - 0.16*10 = 118.4 minutes

Simulation of operating time of operation 3 = m + z*s = 120 - 0.09*10 = 119.1 minutes

Simulation of operating time of operation 4 = m + z*s = 120 + 0.33*10 = 123.3 minutes

Simulation of operating time of operation 5 = m + z*s = 120 - 1.76*10 = 102.4 minutes

Simulation of operating time of operation 6 = m + z*s = 120 - 0.52*10 = 114.8 minutes

Simulation of operating time of operation 7 = m + z*s = 120 - 0.31*10 = 116.9 minutes

Simulation of operating time of operation 8 = m + z*s = 120 - 1.04*10 = 109.6 minutes

Simulation of operating time of operation 9 = m + z*s = 120 + 0.12*10 = 121.2 minutes

Model average time = 120 minutes.

Simulated times are randomly and normally distributed around the model average time.