Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The power series \\(1+x+(x^2/2!)+(x^3/3!)+...=\\sum_{n=0}^{\\infty}x^n/n!\\) con

ID: 3545785 • Letter: T

Question

The power series        (1+x+(x^2/2!)+(x^3/3!)+...=sum_{n=0}^{infty}x^n/n!)    converges to e^x for all values of x. Write a function that uses this series to calculate e^x to six place accuracy by adding terms from the series up to the first term that is less than 10^-6 in absolute value. The prototype of your exponent function should be:

Double exponent(double)

You also need a function to calculate the factorial of a number. Write this function and call it from the exponent function. The prototype of this function is:

long factorial(int)

Using the exponent function, define a new function sinh, that calculates       (sinh(x)=(e^x-e^-x)/2)     

The prototype of the sinh function should be:

double sinh(double)

Write a program that prints a table of values for the function,sinh, for x=-1 to 1 in increments of 0.1.

The output should be:

x=-1.0  sinh(x)=-1.175201

x=-0.9    sinh(x)=-1.026517

x=-0.8   sinh(x)= -0.888106

....  all the way to x=1 sinh(x)=1.175201

Explanation / Answer


#include <stdio.h>


/* declare the functions */

double exponent(double);

long factorial(int);

double sinh(double);


int main()

{

double x;

for (x = -1; x <= 1; x += 0.1)

{

printf("x=%.1f sinh(x)=%.6f ", x,

sinh(x));

}


return 0;


}


double exponent(double x)

{

double result = 0;

double term = 1;

double xp = 1;

int n = 1;

while (term >= 0.000001 || term <= -0.000001)

{

result += term;

xp *= x;

term = xp / factorial(n);

n++;

}

return result;

}


long factorial(int n)

{

long result = 1;

while (n > 1)

{

result *= n;

n--;

}

return result;

}


double sinh(double x)

{

return (exponent(x) - exponent(-x)) / 2.0;

}




output:

x=-1.0 sinh(x)=-1.175201

x=-0.9 sinh(x)=-1.026517

x=-0.8 sinh(x)=-0.888106

x=-0.7 sinh(x)=-0.758584

x=-0.6 sinh(x)=-0.636654

x=-0.5 sinh(x)=-0.521095

x=-0.4 sinh(x)=-0.410752

x=-0.3 sinh(x)=-0.304520

x=-0.2 sinh(x)=-0.201336

x=-0.1 sinh(x)=-0.100167

x=-0.0 sinh(x)=0.000000

x=0.1 sinh(x)=0.100167

x=0.2 sinh(x)=0.201336

x=0.3 sinh(x)=0.304520

x=0.4 sinh(x)=0.410752

x=0.5 sinh(x)=0.521095

x=0.6 sinh(x)=0.636654

x=0.7 sinh(x)=0.758584

x=0.8 sinh(x)=0.888106

x=0.9 sinh(x)=1.026517

x=1.0 sinh(x)=1.175201

Press any key to continue . . .

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote