2. Estimate the following population model using the data set in the chart below
ID: 3370403 • Letter: 2
Question
2. Estimate the following population model using the data set in the chart below.
colGPA=?_0+?_1 age+?_2hsGPA+?_3 skipped+?_4 alcohol+u
where “colGPA” is a student’s college GPA
“age” is the student’s age
“hsGPA” is the student’s high school GPA
“skipped” is average lectures skipped per week
“alcohol” is average days per week the student drinks alcohol
(i) Report your estimated model and briefly discuss (no need to formally conduct a “four step” hypothesis test) the sign, significance and magnitude of the estimated coefficients.
(ii) Conduct a four-step F-test for the joint significance of alcohol and age.
(iii) Estimate the model (using the same data):
colGPA=?_0+?_1 age+?_2hsGPA+u
and then
colGPA=?_0+?_1 age+u
(a) Report your two estimated equations.
age colGPA hsGPA skipped alcohol 21 3 3 2 1 21 3.4 3.2 0 1 20 3 3.6 0 1 19 3.5 3.5 0 0 20 3.6 3.9 0 1.5 20 3 3.4 0 0 22 2.7 3.5 0 2 22 2.7 3 3 3 22 2.7 3 2 2.5 19 3.8 4 0.5 0.75 21 2.8 3 2 1 22 2.9 3.1 1 1 21 3 3.5 0 1 20 2.9 3.8 3 2.5 20 3.3 3.7 1 4 22 2.6 3 3 3.5 19 2.5 3.5 4 3 22 2.5 3 5 5 20 2.4 3 2 4 21 3.6 3.5 1 5 20 2.6 3.5 3 2 22 2.7 3 1 1 20 2.9 3.6 1 1 21 3 4 0 0 20 3.3 3.6 2 5 20 3.1 3.3 1 1 20 3 3.6 2 1 20 3.2 3.1 1 2 20 3 3.4 0 2 20 3.4 3.7 0.5 2 21 2.9 3.7 1 2 21 3.5 3.3 1 0 22 3.7 3.3 0 1 20 3.5 3.5 0 1 21 2.8 3.2 1 3 21 2.5 3.3 1 1 21 3.1 3.4 0.5 1 20 3.5 3.5 1 3 20 3.4 3.4 0.5 0 21 3.5 3.7 0 2 21 2.6 2.5 1 1 21 2.8 3.7 0 2 21 2.6 3 2 3 20 3.5 3 1 3 22 4 4 0 0.5 20 3.8 3.8 1 3 19 2.8 3 4 2 21 3.5 3.7 1 2 21 3 3.4 2 1 21 2.6 2.4 1 2 21 3 3.8 1 2 22 3.7 4 1 2 19 3 3.5 0 2 19 3 3.5 0 2 20 2.9 3.4 1 3 20 2.6 3.6 1 0 22 3 3.2 2 5 21 3.3 3.8 0.5 1 22 2.7 3.3 2 3 21 3 3.4 0 1 21 3.2 3 0 0 20 2.7 3.6 1 3 21 3.6 3.9 1 2 21 2.4 3 2 3 21 2.9 3 1 2 21 3.3 3.3 1 1 20 3.5 3.3 0.5 1.5 21 3 3.2 2 3 21 3 3.4 2 3 21 2.8 3.7 0 1 21 2.9 3.4 0 2 22 3.8 3.9 2 7 20 2.5 3.6 2 1 21 3 4 1 4 20 3.2 3.6 1 2 21 2.2 3 0 1 30 3.4 2.8 0 0 22 2.9 3.2 0 3 22 3.7 2.9 1 5 20 2.9 2.9 1 0.5 23 2.8 3.6 0.5 1 22 3.2 3.4 1 2 21 3.4 3.6 0.5 2 22 3 3.2 2 1 22 2.5 3.2 2 1 21 3.5 3.2 1 3 21 3.1 3.7 1 4 21 2.8 2.9 0 7 21 2.9 3.3 1 2 21 2.9 3.1 2 3 19 3.4 3.5 0 1 20 3.4 3.5 0 1.5 22 3.6 3.7 3 3 26 3.2 3 0.25 0.5 20 3.2 3.8 1 2 21 2.8 3.3 0 0.5 20 3.1 3.6 0 1 20 2.8 3.2 1 2 21 2.7 3.5 0 3 20 3 3.7 0 2Explanation / Answer
First copy data in Excel then copy it in Excel
then run following command:(In R-console)
a=read.table("clipboard",header=T)
attach(a)
l1=lm(colGPA~age+hsGPA+skipped+alcohol)
l2=lm(colGPA~age+hsGPA+skipped+alcohol+age*alcohol)
l3=lm(colGPA~age+hsGPA)
l4=lm(colGPA~age)
summary(l1)
summary(l2)
summary(l3)
summary(l4)
The output is given by:
> summary(l1)
Call:
lm(formula = colGPA ~ age + hsGPA + skipped + alcohol)
Residuals:
Min 1Q Median 3Q Max
-0.75791 -0.21932 -0.00071 0.25609 0.73591
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.70631 0.72714 0.971 0.33384
age 0.03830 0.02514 1.523 0.13105
hsGPA 0.47250 0.10617 4.450 2.33e-05 ***
skipped -0.10436 0.03588 -2.909 0.00452 **
alcohol 0.02987 0.02514 1.188 0.23771
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3282 on 95 degrees of freedom
Multiple R-squared: 0.2764, Adjusted R-squared: 0.2459
F-statistic: 9.07 on 4 and 95 DF, p-value: 3.003e-06
> summary(l2)
Call:
lm(formula = colGPA ~ age + hsGPA + skipped + alcohol + age *
alcohol)
Residuals:
Min 1Q Median 3Q Max
-0.76168 -0.21234 -0.00877 0.26882 0.70961
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.850665 0.828078 1.027 0.30693
age 0.031724 0.030877 1.027 0.30684
hsGPA 0.472177 0.106664 4.427 2.58e-05 ***
skipped -0.105247 0.036122 -2.914 0.00446 **
alcohol -0.124566 0.418069 -0.298 0.76639
age:alcohol 0.007278 0.019665 0.370 0.71215
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3297 on 94 degrees of freedom
Multiple R-squared: 0.2774, Adjusted R-squared: 0.239
F-statistic: 7.217 on 5 and 94 DF, p-value: 9.315e-06
> summary(l3)
Call:
lm(formula = colGPA ~ age + hsGPA)
Residuals:
Min 1Q Median 3Q Max
-0.65337 -0.22120 -0.02659 0.26047 0.85673
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.29249 0.73215 0.399 0.6904
age 0.04427 0.02587 1.711 0.0902 .
hsGPA 0.54373 0.10661 5.100 1.68e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3389 on 97 degrees of freedom
Multiple R-squared: 0.2119, Adjusted R-squared: 0.1956
F-statistic: 13.04 on 2 and 97 DF, p-value: 9.647e-06
> summary(l4)
Call:
lm(formula = colGPA ~ age)
Residuals:
Min 1Q Median 3Q Max
-0.86165 -0.26165 -0.06165 0.33835 0.93188
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.925765 0.581584 5.031 2.21e-06 ***
age 0.006471 0.027768 0.233 0.816
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.3797 on 98 degrees of freedom
Multiple R-squared: 0.0005538, Adjusted R-squared: -0.009645
F-statistic: 0.0543 on 1 and 98 DF, p-value: 0.8162
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.