Run a multiple regression using data from above. A) Interpret the P-value from t
ID: 3370152 • Letter: R
Question
Run a multiple regression using data from above.
A) Interpret the P-value from the multiple regression
B) interpret the T-stat from the multiple regression
C) Run a multiple regression using only Nonfood sales and store size instead of all three independent variables. Which model do you prefer? Why?
Explanation / Answer
> y <- c(20,15,17,9,16,27,35,7,22,23);y
[1] 20 15 17 9 16 27 35 7 22 23
> x1 <- c(305 , 130 , 189 , 175, 101, 269, 421, 195, 282, 203);x1
[1] 305 130 189 175 101 269 421 195 282 203
> x2 <- c(35,98,83,76,93,77,44,57,31,92);x2
[1] 35 98 83 76 93 77 44 57 31 92
> x3 <- c(35,22,27,16,28,46,56,12,40,32);x3
[1] 35 22 27 16 28 46 56 12 40 32
> dat <- data.frame(y,x1,x2,x3);dat
y x1 x2 x3
1 20 305 35 35
2 15 130 98 22
3 17 189 83 27
4 9 175 76 16
5 16 101 93 28
6 27 269 77 46
7 35 421 44 56
8 7 195 57 12
9 22 282 31 40
10 23 203 92 32
> regressor <- lm(y ~ . ,data = dat)
> summary(regressor)
Call:
lm(formula = y ~ ., data = dat)
Residuals:
Min 1Q Median 3Q Max
-1.7111 -0.2484 0.1024 0.4532 1.9631
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -10.17024 3.47313 -2.928 0.026346 *
x1 0.02704 0.01204 2.246 0.065847 .
x2 0.09705 0.03015 3.219 0.018153 *
x3 0.52468 0.05916 8.869 0.000114 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.25 on 6 degrees of freedom
Multiple R-squared: 0.9849, Adjusted R-squared: 0.9773
F-statistic: 130.1 on 3 and 6 DF, p-value: 7.555e-06
> regressor1 <- lm(y ~ x2+x3 , data = dat)
> summary(regressor1)
c)Call:
lm(formula = y ~ x2 + x3, data = dat)
Residuals:
Min 1Q Median 3Q Max
-1.9971 -0.8618 0.0674 0.6691 2.5109
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.75836 2.48325 -1.513 0.174
x2 0.04311 0.02288 1.884 0.102
x3 0.63378 0.04238 14.953 1.44e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.57 on 7 degrees of freedom
Multiple R-squared: 0.9721, Adjusted R-squared: 0.9642
F-statistic: 122.1 on 2 and 7 DF, p-value: 3.615e-06
a)the p- value is 7.555e-06
b)values of t-stat is
-2.928
x1 2.246 .
x2 3.219
x3 8.869
c) From c it is seen that the p-value in new model is less than the previous model so this model is more effective than previous one . This process is called backward elimination.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.