Egon Spengler is planning a charity benefit gala for his “Save the City” campaig
ID: 336555 • Letter: E
Question
Egon Spengler is planning a charity benefit gala for his “Save the City” campaign. However, because one of his partners, Peter Venkman, has difficulty staying on task, the project is scheduled and they are running out of time. Egon has used project management principles to lay out the task relationships and he finds that if they follow the traditional schedule, as outlined below, they will not have enough time to get everything done before the weekend of the gala. Egon has created a list of tasks, their time requirements, and their relationships. He has also begun a network diagram, but needs to know what to do next. He knows that he needs to reduce the total time by four weeks.
Activity
Duration (weeks)
Crash Time (weeks)
Description
Preceding Activity(ies)
Crashing Cost/Week
A
7
Determine gala theme
-
B
5
Reserve portal location for gala
A
C
7
6
Create Marketing Plan
B
$1,500
D
6
3
Ray Parker, Jr. to audition musical acts
B
$1100
E
6
4
Determine ticket sales method
C
$1,000
F
7
4
Purchase supplies, including Stay Puff marshmallows
C
$750
G
4
3
Pick musical act and sign contract
D
$250
H
4
2
Sell tickets in person
E
$500
I
5
4
Sell tickets online
E
$1250
J
1
Gala!
H, I, F, G
1)What is the slack time for activity H?
1
2
9
12
2)What is the earliest start time for activity C?
10
12
27
30
3)What is the latest finish time for activity G?
18
22
26
30
4)Which of the following is the critical path at the beginning of the analysis?
ABCFJ
ABDGJ
ABCEIJ
ABCEHJ
5)What is the first activity that Egon should crash?
a) C
b) D
c) E
D) F
e) I
6)Activity E can be crashed how many times?
a) 0
b) 1
c) 2
D) 3
e) Infinite
7)What is the minimum completion time for the project after crashing (until no more crashing is possible)?
a) 23 weeks
b) 26 weeks
c) 27 weeks
d) 29 weeks
8)If Egon has a budget of only $2,000 for crashing costs, what is the shortest possible completion time?
a) 29 weeks
b) 30 weeks
c) 31 weeks
d) 32 weeks
9)How much will it cost Egon to reduce the original total project time by four weeks ?
a) $2,000
b) $3,250
c) $4,000
d) $4,750
10)How much did crashing that last (fourth) week cost Egon?
a) $750
b) $1000
c) $1,250
d) $1,500
Activity
Duration (weeks)
Crash Time (weeks)
Description
Preceding Activity(ies)
Crashing Cost/Week
A
7
Determine gala theme
-
B
5
Reserve portal location for gala
A
C
7
6
Create Marketing Plan
B
$1,500
D
6
3
Ray Parker, Jr. to audition musical acts
B
$1100
E
6
4
Determine ticket sales method
C
$1,000
F
7
4
Purchase supplies, including Stay Puff marshmallows
C
$750
G
4
3
Pick musical act and sign contract
D
$250
H
4
2
Sell tickets in person
E
$500
I
5
4
Sell tickets online
E
$1250
J
1
Gala!
H, I, F, G
Explanation / Answer
PLEASE FIND BELOW ANSWERS TO FIRST 6 QUESTIONS :
The possible paths and their corresponding durations as follows :
A-B-C-E-H-J = 7 + 5 + 7 + 6 + 4 + 1 = 30
A-B-C-E-I-J = 7 + 5 + 7 + 6 + 5 + 1 = 31
A-B-C-F-J = 7 + 5 + 7 + 7 + 1 = 27
A-B-D-G-J = 7 + 5 + 6 + 4 + 1 = 23
Out of above , A-B-C-E-I-J has the longest duration and hence forms the CRITICAL PATH
Answer to question 1 :
Slack time for activity H = Duration A-B-C-E-I-J- Duration A-B-C-E-H-J = 31 – 30 = 1
Answer to question 2 :
Earliest start time for activity C = Duration of activity A + Duration of activity B = 12weeks
Answer to question 3 :
Slack time for activity D, G = Duration A-B-C-E-I-J – Duration A-B-D-G-J = 31 – 23 = 8 weeks
Therefore Latest finish time of activity G
= Earliest finish time for activity G + Slack of 8 days
= Sum of durations of A/B/D/G + 8 days
= ( 7 + 5 + 6 + 4 ) + 8 days
= 30 days
Answer to question 4 :
The critical path is : A-B-C-E-I-J
Answer to question 5 :
First activity which should be crashed :
Therefore it should be activity E with minimum weekly crashing cost of $1000
Answer to question 6 :
Activity E can be crashed by 2 days ( 6 days less 4 days )
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.