Final Model Summary Table Intercept TemperatureW Winter Rain Harvest Rain Vintag
ID: 3337905 • Letter: F
Question
Final Model Summary Table Intercept TemperatureW Winter Rain Harvest Rain Vintage Standard Error Coefficient P-value Prediction Table Winter RainHarvest Rain Vintage Price 95% PI-Lower Limit Est Price 95% PI-Upper Limit Temperature 17.12 16.73 17.15 16.13 16.42 690 502 420 582 485 763 830 697 608 402 602 819 714 610 575 622 551 536 18.87 15.62 12.47 11.97 19.31 11.49 27.18 13.92 11.83 13.58 11.12 16.05 12.11 130 110 187 187 290 16.42 17.33 16.3 15.72 17.27 15.37 16.53 16.23 155 267 118 292 244 16.55 16.67 16.77 14.98 17.07 16.30 16.95 17.65 15.58 15.82 16.17 16.00 112 158 123 184 11.24 14.98 13.13 11.06 11.69 574 572 418 821 763 13.51 12.88 11.13 13.10 12.39 11.46 247 6 122 4 578Explanation / Answer
Using MS Excel to perform the analysis:
Data > data analysis > regression
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.812243595
R Square
0.659739658
Adjusted R Square
0.597874141
Standard Error
2.219012319
Observations
27
ANOVA
Df
SS
MS
F
Significance F
Regression
4
210.0406552
52.51016
10.66409
5.84459E-05
Residual
22
108.3283448
4.924016
Total
26
318.369
Coefficients
Standard Error
t Stat
P-value
Lower 95%
Upper 95%
Lower 95.0%
Upper 95.0%
Intercept
-42.482066
13.07483997
-3.24915
0.00368
-69.597625
-15.366508
-69.597625
-15.366508
temp
3.040574031
0.737074739
4.125191
0.000444
1.511974588
4.569173473
1.511974588
4.569173473
winter rain
0.010263593
0.003734263
2.748493
0.011726
0.002519207
0.01800798
0.002519207
0.01800798
harvest rain
-0.0150810
0.006253748
-2.41152
0.024677
-0.0280504
-0.0021115
-0.0280504
-0.00211152
vintage
0.120802538
0.055497162
2.176734
0.040513
0.005708468
0.235896607
0.005708468
0.235896607
95% Confidence interval for y = y ± t/2 * s.e(y)
Where y is the predicted value
t/2 is the t table value for =0.05 for n-2 df
s.e(y) is the standard error of y (from the output, s.e(y)= 2.219012319
t/2 = 1.708 (from t table) for 25 df
obs 1: 17.06263384 ± 1.708*2.219012319
lower limit = 17.06263384 - 1.708*2.219012319 = 13.2725608
upper limit =17.06263384 + 1.708*2.219012319 =20.85271
Observation
Predicted price
lower pl
upper pl
1
17.06263384
13.2725608
20.85271
2
17.88621156
14.09613852
21.67628
3
16.23804159
12.44796855
20.02811
4
12.35505654
8.564983499
16.14513
5
13.61748486
9.82741182
17.40756
6
15.72412225
11.93404921
19.5142
7
13.68024621
9.890173165
17.47032
8
20.81444111
17.02436807
24.60451
9
15.9856553
12.19558225
19.77573
10
11.63451607
7.84444303
15.42459
11
15.00208262
11.21200958
18.79216
12
8.578055489
4.787982448
12.36813
13
16.94118123
13.15110819
20.73125
14
14.3479369
10.55786386
18.13801
15
10.44440784
6.654334795
14.23448
16
11.75246889
7.962395849
15.54254
17
14.81648055
11.02640751
18.60655
18
13.92415708
10.13408404
17.71423
19
7.513046708
3.722973667
11.30312
20
12.6327043
8.842631262
16.42278
21
11.28290966
7.492836614
15.07298
22
13.31400617
9.52393313
17.10408
23
12.5948554
8.804782355
16.38493
24
12.72925416
8.939181122
16.51933
25
13.28581732
9.495744278
17.07589
26
12.68633875
8.896265706
16.47641
27
11.34588761
7.555814569
15.13596
SUMMARY OUTPUT
Regression Statistics
Multiple R
0.812243595
R Square
0.659739658
Adjusted R Square
0.597874141
Standard Error
2.219012319
Observations
27
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.