Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

MA130- 01, 02/MA160 Lab 6 (Normal distribution) Name: __________________________

ID: 3333003 • Letter: M

Question

MA130- 01, 02/MA160 Lab 6 (Normal distribution)    Name: ____________________________

1.Cumulative Standard Normal Probability = NORM.S.DIST(z_0, TRUE)

        For example, if you want to find P(z 2), you need to type = NORM.S.DIST(2,TRUE) = 0.977249868

2.Finding z values given probabilities =NORM.S.INV(cumulative probability)

For example, for z value with .10 in upper tail, you need to type = NORM.S.INV(0.9) = 1.281551566

3.Cumulative Normal Probability = NORM.DIST(x_0, mean, standard deviation, TRUE)

              For example, if you want to find P(x 20000) for a normal distribution with mean= 36500, and sd =5000, you need to type

               = NORM.DIST(20000,36500,5000,TRUE) = 0.000483424

4.Finding x values given probabilities =NORM.INV(cumulative probability, mean, standard deviation)

For example, for x value with .10 in lower tail for a normal distribution with mean= 36500, and sd =5000, you need to type

= NORM.INV(0.1, 36500, 5000) = 30092.24217

HW (#1, 2, 3, 4, 7, 8) – Use Excel to find answers and write them on the column B. You need to submit this page.

A

B

C(Details for Column B)

1

P(z < 1.2)

2

P(-1.34 < z < 2.52)

3

P(z > 1.2)

4

z_0 for P(z < z_0) = .7015

5

mean

10

6

sd

2

7

P(x < 14)

8

x_0 for P(x>x_0) = .8485

A

B

C(Details for Column B)

1

P(z < 1.2)

2

P(-1.34 < z < 2.52)

3

P(z > 1.2)

4

z_0 for P(z < z_0) = .7015

5

mean

10

6

sd

2

7

P(x < 14)

8

x_0 for P(x>x_0) = .8485

Explanation / Answer

The answers are in column B. The formulas to calculate the answers are given in Column C.

A B C(Details for Column B) 1 P(z < 1.2) 0.88493 =NORM.S.DIST(1.2,TRUE) 2 P(-1.34 < Z < 2.52) 0.90401 =NORM.S.DIST(2.52,TRUE)-NORM.S.DIST(-1.34,TRUE) 3 P(Z > 1.2) 0.11507 =1-NORM.S.DIST(1.2,TRUE) 4 z_0 for P(z < z_0) = 0.7015 0.52872 =NORM.S.INV(0.7015) 5 mean 10 6 sd 2 7 P(X < 14) 0.97725 =NORM.DIST(14,10,2,TRUE) 8 x_0 for P(x>x_0) = .8485 7.939957 =NORM.INV(1-0.8485,10,2)