The average retirement age for a certain country was reported to be 57.2 years a
ID: 3324466 • Letter: T
Question
Explanation / Answer
a.
i.
Given that,
Standard deviation, =5
Sample Mean, X =61
Null, H0: =57.2
Alternate, H1: >57.2
Level of significance, = 0.1
From Standard normal table, Z /2 =1.282
Since our test is right-tailed
Reject Ho, if Zo < -1.282 OR if Zo > 1.282
Reject Ho if (x-57.2)/5/(n) < -1.282 OR if (x-57.2)/5/(n) > 1.282
Reject Ho if x < 57.2-6.41/(n) OR if x > 57.2-6.41/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 39 then the critical region
becomes,
Reject Ho if x < 57.2-6.41/(39) OR if x > 57.2+6.41/(39)
Reject Ho if x < 56.174 OR if x > 58.226
Suppose the true mean is 57.2
Probability of Type I error,
P(Type I error) = P(Reject Ho | Ho is true )
= P(56.174 < x OR x >58.226 | 1 = 57.2)
= P(56.174-57.2/5/(39) < x - / /n OR x - / /n >58.226-57.2/5/(39)
= P(-1.281 < Z OR Z >1.281 )
= P( Z <-1.281) + P( Z > 1.281)
= 0.1001 + 0.1001 [ Using Z Table ]
= 0.2
ii.
Given that,
Standard deviation, =5
Sample Mean, X =61
Null, H0: <57.2
Alternate, H1: >57.2
Level of significance, = 0.1
From Standard normal table, Z /2 =1.2816
Since our test is right-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-57.2)/5/(n) < -1.2816 OR if (x-57.2)/5/(n) > 1.2816
Reject Ho if x < 57.2-6.408/(n) OR if x > 57.2-6.408/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 39 then the critical region
becomes,
Reject Ho if x < 57.2-6.408/(39) OR if x > 57.2+6.408/(39)
Reject Ho if x < 56.174 OR if x > 58.226
Implies, don't reject Ho if 56.174 x 58.226
Suppose the true mean is 57.2
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(56.174 x 58.226 | 1 = 57.2)
= P(56.174-57.2/5/(39) x - / /n 58.226-57.2/5/(39)
= P(-1.281 Z 1.281 )
= P( Z 1.281) - P( Z -1.281)
= 0.8999 - 0.1001 [ Using Z Table ]
= 0.8
For n =39 the probability of Type II error is 0.8
b.
Given that,
Standard deviation, =5
Sample Mean, X =61
Null, H0: <57.2
Alternate, H1: >57.2
Level of significance, = 0.1
From Standard normal table, Z /2 =1.2816
Since our test is right-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-57.2)/5/(n) < -1.2816 OR if (x-57.2)/5/(n) > 1.2816
Reject Ho if x < 57.2-6.408/(n) OR if x > 57.2-6.408/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 39 then the critical region
becomes,
Reject Ho if x < 57.2-6.408/(39) OR if x > 57.2+6.408/(39)
Reject Ho if x < 56.174 OR if x > 58.226
Implies, don't reject Ho if 56.174 x 58.226
Suppose the true mean is 58.5
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(56.174 x 58.226 | 1 = 58.5)
= P(56.174-58.5/5/(39) x - / /n 58.226-58.5/5/(39)
= P(-2.905 Z -0.342 )
= P( Z -0.342) - P( Z -2.905)
= 0.3662 - 0.0018 [ Using Z Table ]
= 0.364
For n =39 the probability of Type II error is 0.364
c.
Given that,
Standard deviation, =5
Sample Mean, X =61
Null, H0: <57.2
Alternate, H1: >57.2
Level of significance, = 0.1
From Standard normal table, Z /2 =1.2816
Since our test is right-tailed
Reject Ho, if Zo < -1.2816 OR if Zo > 1.2816
Reject Ho if (x-57.2)/5/(n) < -1.2816 OR if (x-57.2)/5/(n) > 1.2816
Reject Ho if x < 57.2-6.408/(n) OR if x > 57.2-6.408/(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 39 then the critical region
becomes,
Reject Ho if x < 57.2-6.408/(39) OR if x > 57.2+6.408/(39)
Reject Ho if x < 56.174 OR if x > 58.226
Implies, don't reject Ho if 56.174 x 58.226
Suppose the true mean is 60
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(56.174 x 58.226 | 1 = 60)
= P(56.174-60/5/(39) x - / /n 58.226-60/5/(39)
= P(-4.779 Z -2.216 )
= P( Z -2.216) - P( Z -4.779)
= 0.0133 - 0 [ Using Z Table ]
= 0.013
For n =39 the probability of Type II error is 0.013
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.