Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Rank the estimates of the coefficients in descending order of their precision; t

ID: 3292443 • Letter: R

Question

Rank the estimates of the coefficients in descending order of their precision; that is, from most precise to least precise. What measure did you use to create this ranking? Which estimate is most precise? Which estimate is least precise?

Model B

. regress y x Bedrooms Baths Age Pool Waterfront

Source | SS df MS Number of obs = 1,080

-------------+---------------------------------- F(6, 1073) = 438.65

   Model | 210.892988 6 35.1488314 Prob > F = 0.0000

Residual | 85.979378 1,073 .080129896 R-squared = 0.7104

-------------+---------------------------------- Adj R-squared = 0.7088

   Total | 296.872366 1,079 .275136577 Root MSE = .28307

------------------------------------------------------------------------------

   y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | .761261 .0353373 21.54 0.000 .691923 .830599

Bedrooms | -.059842 .0174668 -3.43 0.001 -.0941148 -.0255691

   Baths | .2333383 .0210477 11.09 0.000 .192039 .2746376

   Age | -.0054627 .0005296 -10.31 0.000 -.0065019 -.0044234

Pool | .0688156 .0327446 2.10 0.036 .0045648 .1330664

Waterfront | .1839055 .0344828 5.33 0.000 .1162441 .2515669

_cons | 5.775463 .2252819 25.64 0.000 5.33342 6.217507

------------------------------------------------------------------------------

Explanation / Answer

Answer:

Rank the estimates of the coefficients in descending order of their precision; that is, from most precise to least precise.

1.X

2.Baths

3.Age

4.Waterfront

5.Bedrooms

6.Pool

What measure did you use to create this ranking?

t value is used.

Which estimate is most precise? Which estimate is least precise?

Most precise is X and least precise is Pool.

Model B

. regress y x Bedrooms Baths Age Pool Waterfront

Source | SS df MS Number of obs = 1,080

-------------+---------------------------------- F(6, 1073) = 438.65

   Model | 210.892988 6 35.1488314 Prob > F = 0.0000

Residual | 85.979378 1,073 .080129896 R-squared = 0.7104

-------------+---------------------------------- Adj R-squared = 0.7088

   Total | 296.872366 1,079 .275136577 Root MSE = .28307

------------------------------------------------------------------------------

   y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

x | .761261 .0353373 21.54 0.000 .691923 .830599

Bedrooms | -.059842 .0174668 -3.43 0.001 -.0941148 -.0255691

   Baths | .2333383 .0210477 11.09 0.000 .192039 .2746376

   Age | -.0054627 .0005296 -10.31 0.000 -.0065019 -.0044234

Pool | .0688156 .0327446 2.10 0.036 .0045648 .1330664

Waterfront | .1839055 .0344828 5.33 0.000 .1162441 .2515669

_cons | 5.775463 .2252819 25.64 0.000 5.33342 6.217507

------------------------------------------------------------------------------