Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A financial planner tracks the number of new customers added each quarter for a

ID: 3259127 • Letter: A

Question

A financial planner tracks the number of new customers added each quarter for a 6 year period. The data is presented below:

Year               Quarter                      New                Year               Quarter          New

2011               I                                   31                    2014               I                       69

                        II                                  24                                            II                      54

                        III                                 23                                            III                     46

                        IV                                16                                            IV                    32

2012               I                                   42                    2015               I                       82

                        II                                  35                                            II                      66

                        III                                 30                                            III                     51

                        IV                                23                                            IV                    38

2013               I                                   53                    2016               I                       91

                        II                                  45                                            II                      72

                        III                                 39                                            III                     59

                        IV                                27                                            IV                    41

Create a simple linear trend regression model. Let t=0 in 2010: IV. This is a computer deliverable.

(a) Interpret the slope coefficient.

(b) Test to see if the number of new customers is increasing over time. Use alpha = 0.01.

(c) Test to see if the model has explanatory power. Use alpha = 0.05.

(d) Forecast the number of new customers in the first and second quarters of 2017.

Create a multiple regression equation incorporating both a trend (t=0 in 2010: IV) and dummy variables for the quarters. Let the first quarter represent the reference (or base) group. Complete (e) thru (h) using your results. This is a computer deliverable.

(e) Test to see if there is an upward trend in new customers. Use alpha = 0.01.

(f) Test to see if the model has explanatory power. Use alpha = 0.05.

(g) Forecast the number of new customers in the first and second quarters of 2017.

Explanation / Answer

Answer:

Create a simple linear trend regression model. Let t=0 in 2010: IV. This is a computer deliverable.

Regression Analysis

0.425

n

24

r

0.652

k

1

Std. Error

15.317

Dep. Var.

new

ANOVA table

Source

SS

df

MS

F

p-value

Regression

3,818.3654

1  

3,818.3654

16.28

.0006

Residual

5,161.2596

22  

234.6027

Total

8,979.6250

23  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=22)

p-value

95% lower

95% upper

Intercept

17.1313

7.6672

2.234

.0359

1.2304

33.0322

t

1.8222

0.4517

4.034

.0006

0.8855

2.7589

Predicted values for: new

95% Confidence Intervals

95% Prediction Intervals

t

Predicted

lower

upper

lower

upper

Leverage

28

68.152

54.768

81.536

33.683

102.622

0.178

29

69.974

55.763

84.185

35.175

104.773

0.200

When time increases by one quarter, the number of customers increases by 1.8222

(b) Test to see if the number of new customers is increasing over time. Use alpha = 0.01.

Calculated t=4.034, P=0.0006 which is < 0.01 level. We conclude that the number of new customers is increasing over time.

(c) Test to see if the model has explanatory power. Use alpha = 0.05.

Calculated F=16.28, P=0.0006 which is < 0.05 level. The model is significant.

(d) Forecast the number of new customers in the first and second quarters of 2017.

Predicted new customers in the first and second quarters is 68 and 70 ( rounded).

Create a multiple regression equation incorporating both a trend (t=0 in 2010: IV) and dummy variables for the quarters. Let the first quarter represent the reference (or base) group. Complete (e) thru (h) using your results. This is a computer deliverable.

Regression Analysis

0.936

Adjusted R²

0.922

n

24

R

0.967

k

4

Std. Error

5.520

Dep. Var.

new

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,400.7286

4  

2,100.1821

68.93

4.83E-11

Residual

578.8964

19  

30.4682

Total

8,979.6250

23  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=19)

p-value

95% lower

95% upper

Intercept

31.2583

3.2265

9.688

8.75E-09

24.5053

38.0114

Q2

-14.1482

3.1911

-4.434

.0003

-20.8273

-7.4691

Q3

-24.2964

3.2039

-7.583

3.67E-07

-31.0022

-17.5906

Q4

-38.2780

3.2250

-11.869

3.12E-10

-45.0281

-31.5279

t

2.1482

0.1649

13.025

6.42E-11

1.8030

2.4934

Predicted values for: new

95% Confidence Intervals

95% Prediction Intervals

Q2

Q3

Q4

t

Predicted

lower

upper

lower

upper

Leverage

0

0

0

28

91.408

84.655

98.161

78.026

104.790

0.342

1

0

0

29

79.408

72.655

86.161

66.026

92.790

0.342

(e) Test to see if there is an upward trend in new customers. Use alpha = 0.01.

Calculated t=13.025, P=0.0000 which is < 0.01 level. We conclude that the number of new customers is increasing over time

(f) Test to see if the model has explanatory power. Use alpha = 0.05.

  Calculated F=68.93, P=0.0000 which is < 0.05 level. The model is significant.

(g) Forecast the number of new customers in the first and second quarters of 2017.

Predicted new customers in the first and second quarters is 91 and 79 ( rounded).

Regression Analysis

0.425

n

24

r

0.652

k

1

Std. Error

15.317

Dep. Var.

new

ANOVA table

Source

SS

df

MS

F

p-value

Regression

3,818.3654

1  

3,818.3654

16.28

.0006

Residual

5,161.2596

22  

234.6027

Total

8,979.6250

23  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=22)

p-value

95% lower

95% upper

Intercept

17.1313

7.6672

2.234

.0359

1.2304

33.0322

t

1.8222

0.4517

4.034

.0006

0.8855

2.7589

Predicted values for: new

95% Confidence Intervals

95% Prediction Intervals

t

Predicted

lower

upper

lower

upper

Leverage

28

68.152

54.768

81.536

33.683

102.622

0.178

29

69.974

55.763

84.185

35.175

104.773

0.200

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote