Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A financial planner tracks the number of new customers added each quarter for a

ID: 3244954 • Letter: A

Question

A financial planner tracks the number of new customers added each quarter for a 6 year period. The data is presented below:

(a) Create a multiple regression equation incorporating both a trend (t=0 in 2010: IV) and dummy variables for the quarters. Let the first quarter represent the reference (or base) group. Complete (e) thru (h) using your results. This is a computer deliverable. (20 pts)

(b) Test for the existence of first order autocorrelation, use alpha = 0.05. The calculated dw = 1.19. (12 pts)

Year Quarter New Year Quarter New 2011 I 31 2014 I 69 II 24 II 54 III 23 III 46 IV 16 IV 32 2012 I 42 2015 I 82 II 35 II 66 III 30 III 51 IV 23 IV 38 2013 I 53 2016 I 91 II 45 II 72 III 39 III 59 IV 27 IV 41

Explanation / Answer

Answer:

Data is coded like this:

new customers

Q2

Q3

Q4

t

31

0

0

0

1

24

1

0

0

2

23

0

1

0

3

16

0

0

1

4

42

0

0

0

5

35

1

0

0

6

30

0

1

0

7

23

0

0

1

8

53

0

0

0

9

45

1

0

0

10

39

0

1

0

11

27

0

0

1

12

69

0

0

0

13

54

1

0

0

14

46

0

1

0

15

32

0

0

1

16

82

0

0

0

17

66

1

0

0

18

51

0

1

0

19

38

0

0

1

20

91

0

0

0

21

72

1

0

0

22

59

0

1

0

23

41

0

0

1

24

Regression Analysis

0.936

Adjusted R²

0.922

n

24

R

0.967

k

4

Std. Error

5.520

Dep. Var.

new customers

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,400.7286

4  

2,100.1821

68.93

4.83E-11

Residual

578.8964

19  

30.4682

Total

8,979.6250

23  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=19)

p-value

95% lower

95% upper

Intercept

37.7030

2.8930

13.032

6.35E-11

31.6478

43.7582

Q2

-14.1482

3.1911

-4.434

.0003

-20.8273

-7.4691

Q3

-24.2964

3.2039

-7.583

3.67E-07

-31.0022

-17.5906

Q4

-38.2780

3.2250

-11.869

3.12E-10

-45.0281

-31.5279

t

2.1482

0.1649

13.025

6.42E-11

1.8030

2.4934

Observation

new customers

Predicted

Residual

1

31.0

39.9

-8.9

2

24.0

27.9

-3.9

3

23.0

19.9

3.1

4

16.0

8.0

8.0

5

42.0

48.4

-6.4

6

35.0

36.4

-1.4

7

30.0

28.4

1.6

8

23.0

16.6

6.4

9

53.0

57.0

-4.0

10

45.0

45.0

-0.0

11

39.0

37.0

2.0

12

27.0

25.2

1.8

13

69.0

65.6

3.4

14

54.0

53.6

0.4

15

46.0

45.6

0.4

16

32.0

33.8

-1.8

17

82.0

74.2

7.8

18

66.0

62.2

3.8

19

51.0

54.2

-3.2

20

38.0

42.4

-4.4

21

91.0

82.8

8.2

22

72.0

70.8

1.2

23

59.0

62.8

-3.8

24

41.0

51.0

-10.0

Durbin-Watson =

1.62

The regression model is

New customers = 37.7030 -14.1482*Q2 -24.2964*Q3 -38.2780 *Q4+2.1482*t

(b) Test for the existence of first order autocorrelation, use alpha = 0.05. The calculated dw = 1.19. (12 pts)

Table values : dL=1.04   and dU=1.77

calculated dw in between dL and dU.

The test is inconclusive.

new customers

Q2

Q3

Q4

t

31

0

0

0

1

24

1

0

0

2

23

0

1

0

3

16

0

0

1

4

42

0

0

0

5

35

1

0

0

6

30

0

1

0

7

23

0

0

1

8

53

0

0

0

9

45

1

0

0

10

39

0

1

0

11

27

0

0

1

12

69

0

0

0

13

54

1

0

0

14

46

0

1

0

15

32

0

0

1

16

82

0

0

0

17

66

1

0

0

18

51

0

1

0

19

38

0

0

1

20

91

0

0

0

21

72

1

0

0

22

59

0

1

0

23

41

0

0

1

24

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote